New! Sign up for our free email newsletter.
Science News
from research organizations

Miniature Chain-mail Fabric Holds Promise For Smart Textiles

Date:
March 29, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists at the University of Illinois have fabricated the world's smallest chain-mail fabric. Combined with existing processing techniques, the flexible, metallic fabric holds promise for fully engineered smart textiles.
Share:
FULL STORY

Scientists at the University of Illinois have fabricated the world's smallest chain-mail fabric. Combined with existing processing techniques, the flexible, metallic fabric holds promise for fully engineered smart textiles.

"The miniature fabric is an important step toward creating textiles where structure and electronics can be designed, integrated and controlled from the ground up," said Chang Liu, a Willett Scholar and a professor of electrical and computer engineering at Illinois.

The fabric was made by Liu and graduate student Jonathan Engel. They describe the fabric and the fabrication process in the March issue of the Journal of Micromechanics and Microengineering.

The fabric is similar in construction to the chain-mail armor worn by medieval knights. It consists of a network of small rings about 500 microns in diameter and even smaller links about 400 microns long (a micron is 1 millionth of a meter). The rings and links are built upon a planar substrate and then released to create a flexible sheet that can bend along two axes and drape over curved surfaces.

Because the rings and links can slide and rotate against each other, the fabric possesses unique mechanical and electrical properties. For example, the electrical resistance changes when the fabric is stretched. These properties could prove useful for the development of smart fabric and wearable electronic devices for pervasive computing.

"The first layer of fabric could consist of silicon islands with embedded circuits or sensors," said Liu, who also is affiliated with the university's Beckman Institute for Advanced Science and Technology, the Institute for Genomic Biology, and the Micro and Nanotechnology Laboratory.

"The resulting fabric could generate electricity, detect movement or damage, or serve some other active role," Liu said.

Although demonstrated at the wafer scale, the researchers' chain-mail fabric could be made in large swatches by existing roll-to-roll processes.

The Defense Advanced Research Projects Agency funded the work.


Story Source:

Materials provided by University of Illinois at Urbana-Champaign. Note: Content may be edited for style and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Miniature Chain-mail Fabric Holds Promise For Smart Textiles." ScienceDaily. ScienceDaily, 29 March 2007. <www.sciencedaily.com/releases/2007/03/070328110943.htm>.
University of Illinois at Urbana-Champaign. (2007, March 29). Miniature Chain-mail Fabric Holds Promise For Smart Textiles. ScienceDaily. Retrieved October 31, 2024 from www.sciencedaily.com/releases/2007/03/070328110943.htm
University of Illinois at Urbana-Champaign. "Miniature Chain-mail Fabric Holds Promise For Smart Textiles." ScienceDaily. www.sciencedaily.com/releases/2007/03/070328110943.htm (accessed October 31, 2024).

Explore More

from ScienceDaily

RELATED STORIES