New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Solubility

Solubility is a property referring to the ability for a given substance, the solute, to dissolve in a solvent. It is measured in terms of the maximum amount of solute dissolved in a solvent at equilibrium. The resulting solution is called a saturated solution. Certain substances are soluble in all proportions with a given solvent, such as ethanol in water. This property is known as miscibility.

Under various conditions, the equilibrium solubility can be exceeded to give a so-called supersaturated solution, which is metastable. The solvent is often a solid, which can be a pure substance or a mixture. The species that dissolves, the solute, can be a gas, another liquid, or a solid. Solubilities range widely, from infinitely soluble such as ethanol in water, to poorly soluble, such as silver chloride in water. The term insoluble is often applied to poorly soluble compounds, though strictly speaking there are very few cases where there is absolutely no material dissolved.

The process of dissolving, called dissolution, is relatively straightforward for covalent substances such as ethanol. When ethanol dissolves in water, the ethanol molecules remain intact but form new hydrogen bonds with the water. When, however, an ionic compound such as sodium chloride (NaCl) dissolves in water, the sodium chloride lattice dissociates into separate ions which are solvated (wrapped) with a coating of water molecules. Nonetheless, NaCl is said to dissolve in water, because evaporation of the solvent returns crystalline NaCl.

Related Stories
 


Matter & Energy News

December 5, 2025

Kyushu University scientists have achieved a major leap in fuel cell technology by enabling efficient proton transport at just 300°C. Their scandium-doped oxide materials create a wide, soft pathway that lets protons move rapidly without clogging ...
Researchers engineered a strained germanium layer on silicon that allows charge to move faster than in any silicon-compatible material to date. This record mobility could lead to chips that run cooler, faster, and with dramatically lower energy ...
Researchers have discovered a new way to grow graphene that deliberately adds structural defects to enhance its usefulness in electronics, sensors, catalysts, and more. Using a specially shaped molecule called azupyrene, scientists can produce ...
A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the ...
Engineers have unlocked a new class of supercapacitor material that could rival traditional batteries in energy while charging dramatically faster. By redesigning carbon structures into highly curved, accessible graphene networks, the team achieved ...
Quantum communication is edging closer to reality thanks to a breakthrough in teleporting information between photons from different quantum dots—one of the biggest challenges in building a quantum internet. By creating nearly identical ...
Researchers have directly observed Floquet effects in graphene for the first time, settling a long-running scientific debate. Their ultrafast light-based technique demonstrates that graphene’s ...
Researchers have discovered a low-energy way to recycle Teflon® by using mechanical motion and sodium metal. The process turns the notoriously durable plastic into sodium fluoride that can be reused directly in chemical manufacturing. This creates ...
Europe is investing in a coordinated effort to develop high-power optical vortex technologies and train new specialists in the field. The HiPOVor network unites academia and industry to advance applications ranging from material processing to ...
Scientists have directly measured the minuscule electron sharing that makes precious-metal catalysts so effective. Their new technique, IET, reveals how molecules bind and react on metal surfaces with unprecedented clarity. The insights promise ...
Researchers have discovered a way to store information using a rare class of materials called ferroaxials, which rely on swirling electric dipoles instead of magnetism or charge. These vortex-like states are naturally stable and resistant to outside ...
New research shows that light’s magnetic field is far more influential than scientists once believed. The team found that this magnetic component significantly affects how light rotates as it passes through certain materials. Their work challenges ...

Latest Headlines

updated 12:56 pm ET