New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Large-scale structure of the cosmos

In physical cosmology, the term large-scale structure refers to the characterization of observable distributions of matter and light on the largest scales (typically on the order of billions of light-years). Sky surveys and mappings of the various wavelength bands of electromagnetic radiation (in particular 21-cm emission) have yielded much information on the content and character of the universe's structure.

The organization of structure arguably begins at the stellar level, though most cosmologists rarely address astrophysics on that scale. Stars are organised into galaxies, which in turn form clusters and superclusters that are separated by immense voids. Prior to 1989, it was commonly assumed that virialized galaxy clusters were the largest structures in existence, and that they were distributed more or less uniformly throughout the universe in every direction. However, based on redshift survey data, in 1989 Margaret Geller and John Huchra discovered the "Great Wall," a sheet of galaxies more than 500 million light-years long and 200 million wide, but only 15 million light-years thick. The existence of this structure escaped notice for so long because it requires locating the position of galaxies in three dimensions, which involves combining location information about the galaxies with distance information from redshifts. In April 2003, another large-scale structure was discovered, the Sloan Great Wall. However, technically it is not a 'structure', since the objects in it are not gravitationally related with each other but only appear this way, caused by the distance measurement that was used. One of the biggest voids in space is the Capricornus void, with an est. diameter of 230 million light years. However in August 2007 a new supervoid was confirmed in the constellation Eridanus, which is nearly a billion light years across.

In more recent studies the universe appears as a collection of giant bubble-like voids separated by sheets and filaments of galaxies, with the superclusters appearing as occasional relatively dense nodes.

Related Stories
 


Space & Time News

October 26, 2025

A UCLA-led team has achieved the sharpest-ever view of a distant star’s disk using a groundbreaking photonic lantern device on a single telescope—no multi-telescope array required. This technology splits incoming starlight into multiple ...
Researchers propose that hydrogen gas from the early Universe emitted detectable radio waves influenced by dark matter. Studying these signals, especially from the Moon’s radio-quiet environment, could reveal how dark matter clumped together ...
3I/ATLAS, a mysterious interstellar object racing toward the Sun, is baffling scientists with its speed and origin. Some researchers suggest it could even be alien-made, drawing comparisons to probes ...
High above the Sun’s blazing equator lie its mysterious poles, the birthplace of fast solar winds and the heart of its magnetic heartbeat. For decades, scientists have struggled to see these regions, hidden from Earth’s orbit. With the upcoming ...
A colossal northern asteroid impact billions of years ago likely shaped the Moon’s south polar region and explains its uneven terrain. Researchers found that the South Pole-Aitken Basin formed from a glancing northern strike, revealing deep ...
ESA’s Mars orbiters have observed comet 3I/ATLAS, only the third interstellar comet ever discovered. The faint, distant object revealed a glowing coma as it was heated by the Sun. Researchers are still studying the data to understand its makeup ...
Mars may look calm, but new research reveals it’s a world of fierce winds and swirling dust devils racing at hurricane-like speeds. Using deep learning on thousands of satellite images from European orbiters, scientists have discovered that ...
ESA has inaugurated a powerful new 35-meter deep space antenna at its New Norcia site in Western Australia, marking a major boost to Europe’s ability to communicate with spacecraft exploring the ...
Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table ...
A new boron-rich compound, manganese diboride, delivers much higher energy density than current solid-rocket materials while remaining stable until intentionally ignited. Its power comes from an unusual, strained atomic structure formed during ...
Astronomers have long relied on supercomputers to simulate the immense structure of the Universe, but a new tool called Effort.jl is changing that. By mimicking the behavior of complex cosmological models, this emulator delivers results with the ...
Faint hydrogen signals from the cosmic Dark Ages may soon help determine the mass of dark matter particles. Simulations suggest future Moon-based observatories could distinguish between warm and cold dark matter, providing long-sought answers about ...

Latest Headlines

updated 12:56 pm ET