New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Breaking wave

In physics, a breaking wave is a wave whose amplitude reaches a critical level at which some process can suddenly start to occur that causes large amounts of wave energy to be dissipated. At this point, simple physical models describing the dynamics of the wave will often become invalid, particularly those which assume linear behavior. The most generally familiar sort of breaking wave is the breaking of water surface waves on a coastline. Because of the horizontal component of the fluid velocity associated with the wave motion, wave crests steepen as the amplitude increases; wave breaking generally occurs where the amplitude reaches the point that the crest of the wave actually overturns - though the types of breaking water surface waves are discussed in more detail below. Certain other effects in fluid dynamics have also been termed "breaking waves", partly by analogy with water surface waves. In meteorology, gravity waves are said to break when the wave produces regions where the potential temperature decreases with height, leading to energy dissipation through convective instability; likewise Rossby waves are said to break when the potential vorticity gradient is overturned. Wave breaking also occurs in plasmas, when the particle velocities exceed the wave's phase speed.

Related Stories
 


Matter & Energy News

August 1, 2025

A Penn State-led research team has unraveled the long-standing mystery of how lightning begins inside thunderclouds. Their findings offer the first quantitative, physics-based explanation for lightning initiation—and a glimpse into the stormy ...
Scientists have cracked open a mysterious layer inside batteries, using cutting-edge 3D atomic force microscopy to capture the dynamic molecular structures at their solid-liquid interfaces. These once-invisible electrical double layers (EDLs) twist, ...
Deep beneath the Swiss-French border, the Large Hadron Collider unleashes staggering amounts of energy and radiation—enough to fry most electronics. Enter a team of Columbia engineers, who built ultra-rugged, radiation-resistant chips that now ...
Researchers are exploring AI-powered digital twins as a game-changing tool to accelerate the clean energy transition. These digital models simulate and optimize real-world energy systems like wind, solar, geothermal, hydro, and biomass. But while ...
Deep in Serbia's Jadar Valley, scientists discovered a mineral with an uncanny resemblance to Superman's Kryptonite both in composition and name. Dubbed jadarite, this dull white crystal lacks the ...
A team at KAUST has revealed that the short lifespan of aqueous batteries is primarily due to "free water" molecules triggering harmful chemical reactions at the anode. By adding affordable sulfate salts like zinc sulfate, they significantly reduced ...
Aalto University physicists in Finland have set a new benchmark in quantum computing by achieving a record-breaking millisecond coherence in a transmon qubit — nearly doubling prior limits. This development not only opens the door to far more ...
Imagine concrete that not only survives wildfires and extreme weather, but heals itself and absorbs carbon from the air. Scientists at USC have created an AI model called Allegro-FM that simulates billions of atoms at once, helping design futuristic ...
Scientists have used DNA's self-assembling properties to engineer intricate moiré superlattices at the nanometer scale—structures that twist and layer like never before. With clever molecular ...
Scientists have cracked a century-old physics mystery by detecting magnetic signals in non-magnetic metals using only light and a revamped laser technique. Previously undetectable, these faint magnetic “whispers” are now measurable, revealing ...
Using advanced metasurfaces, researchers can now twist light to uncover hidden images and detect molecular handedness, potentially revolutionizing data encryption, biosensing, and drug ...
A powerful new technique harnesses swirling plasma inside laser-blasted microtubes to produce record-breaking magnetic fields—rivaling those near neutron stars—all within a compact laboratory setup. This innovation promises to transform ...

Latest Headlines

updated 12:56 pm ET