New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Breaking wave

In physics, a breaking wave is a wave whose amplitude reaches a critical level at which some process can suddenly start to occur that causes large amounts of wave energy to be dissipated. At this point, simple physical models describing the dynamics of the wave will often become invalid, particularly those which assume linear behavior. The most generally familiar sort of breaking wave is the breaking of water surface waves on a coastline. Because of the horizontal component of the fluid velocity associated with the wave motion, wave crests steepen as the amplitude increases; wave breaking generally occurs where the amplitude reaches the point that the crest of the wave actually overturns - though the types of breaking water surface waves are discussed in more detail below. Certain other effects in fluid dynamics have also been termed "breaking waves", partly by analogy with water surface waves. In meteorology, gravity waves are said to break when the wave produces regions where the potential temperature decreases with height, leading to energy dissipation through convective instability; likewise Rossby waves are said to break when the potential vorticity gradient is overturned. Wave breaking also occurs in plasmas, when the particle velocities exceed the wave's phase speed.

Related Stories
 


Matter & Energy News

September 12, 2025

For the first time, scientists have observed electrons in graphene behaving like a nearly perfect quantum fluid, challenging a long-standing puzzle in physics. By creating ultra-clean samples, the team at IISc uncovered a surprising decoupling of ...
Physicists have unveiled a new superconducting detector sensitive enough to hunt dark matter particles smaller than electrons. By capturing faint photon signals, the device pushes the search into uncharted ...
Researchers in Germany and Australia have created a simple but powerful tool to detect nanoplastics—tiny, invisible particles that can slip through skin and even the blood-brain barrier. Using an "optical sieve" test strip viewed under a regular ...
Artificial intelligence is consuming enormous amounts of energy, but researchers at the University of Florida have built a chip that could change everything by using light instead of electricity for a core AI function. By etching microscopic lenses ...
Scientists at the University of Tokyo have unveiled “gold quantum needles,” a newly discovered nanocluster structure formed under unusual synthesis conditions. Unlike typical spherical clusters, these elongated, pencil-shaped formations display ...
Scientists have created a transparent solar coating that turns ordinary windows into clean energy generators without affecting clarity. Using cholesteric liquid crystal layers, the coating redirects polarized sunlight to the window edges where solar ...
A hidden quantum geometry that distorts electron paths has finally been observed in real materials. This “quantum metric,” once thought purely theoretical, may revolutionize electronics, superconductivity, and ultrafast ...
A Japanese research team successfully harnessed E. coli to produce PDCA, a strong, biodegradable plastic alternative. Their method avoids toxic byproducts and achieves record production levels, overcoming key roadblocks with creative ...
Scientists at Northwestern University have developed a groundbreaking nickel-based catalyst that could transform the way the world recycles plastic. Instead of requiring tedious sorting, the catalyst selectively breaks down stubborn polyolefin ...
Scientists in Japan have uncovered a strange new behavior in “heavy” electrons — particles that act as if they carry far more mass than usual. These electrons were found to be entangled, sharing a deep quantum link, and doing so in ways tied ...
Quantum scientists in Innsbruck have taken a major leap toward building the internet of the future. Using a string of calcium ions and finely tuned lasers, they created quantum nodes capable of generating streams of entangled photons with 92% ...
Rice University physicists confirmed that flat electronic bands in kagome superconductors aren’t just theoretical, they actively shape superconductivity and magnetism. This breakthrough could guide the design of next-generation quantum materials ...

Latest Headlines

updated 12:56 pm ET