New! Sign up for our free email newsletter.
Science News
from research organizations

Life cycle assessment approach combines environmental with economic factors to determine greenhouse gas reductions for varying forms of bioenergy

Date:
October 28, 2015
Source:
Elsevier
Summary:
A new study sets out to calculate the true costs and benefits associated with replacing fossil fuels with bioenergy in varying forms for numerous s applications. The life cycle assessment approach takes into account entire bioenergy systems, including every step along the supply chain.
Share:
FULL STORY

A study published in the journal Biomass & Bioenergy sets out to calculate the true costs and benefits associated with replacing fossil fuels with bioenergy in varying forms for numerous s applications. The life cycle assessment (LCA) approach takes into account entire bioenergy systems, including every step along the supply chain.

The study led by Patricia Thornley of the Tyndall Centre for Climate Change Research at the University of Manchester has been selected for Elsevier's Atlas Award.

"The cost of bioenergy systems per unit of greenhouse gas reduced is really important because we all want to do the sensible environmental thing, but we don't want excessive cost attached to it," Thornley explained. "In this paper we brought environmental and economic factors together to then showcase how different bioenergy systems contribute to future energy systems."

Their assessment takes all of the hidden costs of bioenergy's production into account, including greenhouse gas emissions associated with the production and transport of bioenergy resources, to provide a solid foundation for making decisions about the future of energy.

The results confirm that bioenergy can deliver substantial and cost-effective greenhouse gas reductions, however the most sensible use of limited bioenergy resources is also heavily dependent on how one frames the goals. For instance, the assessment shows that large-scale electricity systems are best in terms of absolute greenhouse gas reductions per unit of energy generated. Wood chips used in medium-scale district heating boilers on the other hand, deliver the highest greenhouse gas reductions per unit of harvested biomass.

The findings of the study are especially well timed as the European Union is currently reviewing its bioenergy policy.


Story Source:

Materials provided by Elsevier. Note: Content may be edited for style and length.


Journal Reference:

  1. Patricia Thornley, Paul Gilbert, Simon Shackley, Jim Hammond. Maximizing the greenhouse gas reductions from biomass: The role of life cycle assessment. Biomass and Bioenergy, 2015; 81: 35 DOI: 10.1016/j.biombioe.2015.05.002

Cite This Page:

Elsevier. "Life cycle assessment approach combines environmental with economic factors to determine greenhouse gas reductions for varying forms of bioenergy." ScienceDaily. ScienceDaily, 28 October 2015. <www.sciencedaily.com/releases/2015/10/151028131028.htm>.
Elsevier. (2015, October 28). Life cycle assessment approach combines environmental with economic factors to determine greenhouse gas reductions for varying forms of bioenergy. ScienceDaily. Retrieved December 3, 2024 from www.sciencedaily.com/releases/2015/10/151028131028.htm
Elsevier. "Life cycle assessment approach combines environmental with economic factors to determine greenhouse gas reductions for varying forms of bioenergy." ScienceDaily. www.sciencedaily.com/releases/2015/10/151028131028.htm (accessed December 3, 2024).

Explore More

from ScienceDaily

RELATED STORIES