New! Sign up for our free email newsletter.
Science News
from research organizations

Turning plastic bags into high-tech materials

Date:
September 25, 2013
Source:
University of Adelaide
Summary:
Researchers have developed a process for turning waste plastic bags into a high-tech nanomaterial. The innovative nanotechnology uses non-biodegradable plastic grocery bags to make 'carbon nanotube membranes' -- highly sophisticated and expensive materials with a variety of potential advanced applications including filtration, sensing, energy storage and a range of biomedical innovations.
Share:
FULL STORY

University of Adelaide researchers have developed a process for turning waste plastic bags into a high-tech nanomaterial.

The innovative nanotechnology uses non-biodegradable plastic grocery bags to make 'carbon nanotube membranes' -- highly sophisticated and expensive materials with a variety of potential advanced applications including filtration, sensing, energy storage and a range of biomedical innovations.

"Non-biodegradable plastic bags are a serious menace to natural ecosystems and present a problem in terms of disposal," says Professor Dusan Losic, ARC Future Fellow and Research Professor of Nanotechnology in the University's School of Chemical Engineering.

"Transforming these waste materials through 'nanotechnological recycling' provides a potential solution for minimizing environmental pollution at the same time as producing high-added value products."

Carbon nanotubes are tiny cylinders of carbon atoms, one nanometer in diameter (1/10,000 the diameter of a human hair). They are the strongest and stiffest materials yet discovered -- hundreds of times stronger than steel but six times lighter -- and their unique mechanical, electrical, thermal and transport properties present exciting opportunities for research and development. They are already used in a variety of industries including in electronics, sports equipment, long-lasting batteries, sensing devices and wind turbines.

The University of Adelaide's Nanotech Research Group has 'grown' the carbon nanotubes onto nanoporous alumina membranes. They used pieces of grocery plastic bags which were vaporized in a furnace to produce carbon layers that line the pores in the membrane to make the tiny cylinders (the carbon nanotubes). The idea was conceived and carried out by PhD student Tariq Altalhi.

"Initially we used ethanol to produce the carbon nanotubes," says Professor Losic. "But my student had the idea that any carbon source should be useable."

The huge potential market for carbon nanotubes hinges on industry's ability to produce large quantities more cheaply and uniformly. Current synthesis methods usually involve complex processes and equipment, and most companies on the market measure production output in only several grams per day.

"In our laboratory, we've developed a new and simplified method of fabrication with controllable dimensions and shapes, and using a waste product as the carbon source," says Professor Losic.

The process is also catalyst and solvent free, which means the plastic waste can be used without generating poisonous compounds.


Story Source:

Materials provided by University of Adelaide. Note: Content may be edited for style and length.


Journal Reference:

  1. Tariq Altalhi, Tushar Kumeria, Abel Santos, Dusan Losic. Synthesis of well-organised carbon nanotube membranes from non-degradable plastic bags with tuneable molecular transport: Towards nanotechnological recycling. Carbon, 2013; 63: 423 DOI: 10.1016/j.carbon.2013.07.003

Cite This Page:

University of Adelaide. "Turning plastic bags into high-tech materials." ScienceDaily. ScienceDaily, 25 September 2013. <www.sciencedaily.com/releases/2013/09/130925102651.htm>.
University of Adelaide. (2013, September 25). Turning plastic bags into high-tech materials. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2013/09/130925102651.htm
University of Adelaide. "Turning plastic bags into high-tech materials." ScienceDaily. www.sciencedaily.com/releases/2013/09/130925102651.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES