New! Sign up for our free email newsletter.
Science News
from research organizations

Discovery of new gigantic swelling phenomenon of layered crystal driven by water

Date:
May 1, 2013
Source:
National Institute for Materials Science
Summary:
Scientists have discovered an intriguing phenomenon in which an inorganic layered crystal expanded and contracted by 100 times its original size in a few seconds in an aqueous solution, displaying a behavior similar to a living cell.
Share:
FULL STORY

A research group at the International Center for Materials Nanoarchitectonics (MANA) of NIMS discovered an intriguing phenomenon in which an inorganic layered crystal expanded and contracted by 100 times its original size in a few seconds in an aqueous solution, displaying a behavior similar to a living cell.

A research group headed by Dr. Takayoshi Sasaki (MANA Principal Investigator), Dr. Renzhi Ma (MANA Scientist), and Dr. Fengxia Geng (Postdoctoral Researcher) of the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), discovered an intriguing phenomenon in which an inorganic layered crystal expanded and contracted by 100 times its original size in a few seconds when immersed in an aqueous solution, displaying a behavior similar to a living cell.

It is known that inorganic layered crystals intercalate various types of ions and molecules between their layers to show swelling when immersed in aqueous solutions, but the degree of swelling is normally on the order of several 10%. In some limited examples, swelling of several times has been achieved when a large volume of water was absorbed, as water is a solvent. However, in such cases, the force that acts between the layers is weakened, and the crystals will split into thin fragments under even a weak external force, such as shaking of the solution. For this reason, it has been virtually impossible to maintain a stable swelling exceeding 10 times the original size, and scientific understanding in connection with the swelling reaction of lamellar crystals had been limited.

In this research, the MANA group discovered that inorganic plate-shaped crystals such as lamellar metal oxides expand in an manner similar to an accordion, reaching 100 times their original length in the layer stacking direction in 1-2 seconds, under the action of a diluted aqueous solution of an organic compound having an amino group and a hydroxy group at its two ends. In one surprising finding, although the crystal expanded in a string-like manner, it remained stable and did not break, and it returned to its original state in several seconds when an acid was added. Although the lamellar crystal used in this research has a stacked structure comprising around 3000 layers, this means that a huge volume of water, sufficient to cause swelling of as much as 100 times, was absorbed into and then expelled from the interlayer space almost instantaneously, and in this process, the crystal behaved as a monolith without separation of the layers. This amazing phenomenon implies that the water, which is absorbed between the layers, has a special state, and theoretical calculations suggested that a strong, tough hydrogen bond network of water molecules is developed with the organic compound as the point of origin to stabilize the highly swollen structure.

These research results will contribute to advancing understanding of the synthesis process of 2-dimensional materials (graphene, nanosheets) via delamination of precursory lamellar compounds, which have been a "hot topic" in recent years, and to improving controllability of that process, and thus is expected to open the road to high yield synthesis of high grade nanosheets. This discovery is also expected to shed light on the unique behavior of water when enclosed in confined spaces, which is a key factor in biological phenomena, but is still an area where many questions remain to be answered.

These results were obtained as part of the research topic "Creation of New Nanostructured Materials and Manufacturing Processes for Next-Generation Electronics Using Inorganic Nanosheets" (Research Representative: Takayoshi Sasaki) in the CREST (team-oriented research with aim of achieving strategic goals) research project "Establishment of Innovative Manufacturing Technology Based on Nanotechnology" (Research Supervisor: Yasuhiro Horiike) of the Japan Science and Technology Agency (JST).


Story Source:

Materials provided by National Institute for Materials Science. Note: Content may be edited for style and length.


Journal Reference:

  1. Fengxia Geng, Renzhi Ma, Akira Nakamura, Kosho Akatsuka, Yasuo Ebina, Yusuke Yamauchi, Nobuyoshi Miyamoto, Yoshitaka Tateyama, Takayoshi Sasaki. Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials. Nature Communications, 2013; 4: 1632 DOI: 10.1038/ncomms2641

Cite This Page:

National Institute for Materials Science. "Discovery of new gigantic swelling phenomenon of layered crystal driven by water." ScienceDaily. ScienceDaily, 1 May 2013. <www.sciencedaily.com/releases/2013/05/130501144151.htm>.
National Institute for Materials Science. (2013, May 1). Discovery of new gigantic swelling phenomenon of layered crystal driven by water. ScienceDaily. Retrieved January 26, 2025 from www.sciencedaily.com/releases/2013/05/130501144151.htm
National Institute for Materials Science. "Discovery of new gigantic swelling phenomenon of layered crystal driven by water." ScienceDaily. www.sciencedaily.com/releases/2013/05/130501144151.htm (accessed January 26, 2025).

Explore More

from ScienceDaily

RELATED STORIES