New! Sign up for our free email newsletter.
Science News
from research organizations

3-D biomimetic scaffolds support regeneration of complex tissues from stem cells

Date:
January 10, 2013
Source:
Mary Ann Liebert, Inc., Publishers
Summary:
Stem cells can be grown on biocompatible scaffolds to form complex tissues such as bone, cartilage, and muscle for repair and regeneration of damaged or diseased tissue. However, to function properly, the cells must often grow in a specific pattern or alignment. An innovative method for creating a stretched polymer scaffold can support complex tissue architectures.
Share:
FULL STORY

Stem cells can be grown on biocompatible scaffolds to form complex tissues such as bone, cartilage, and muscle for repair and regeneration of damaged or diseased tissue. However, to function properly, the cells must often grow in a specific pattern or alignment. An innovative method for creating a stretched polymer scaffold that can support complex tissue architectures is described in an article in Tissue Engineering, Part C, Methods.

Zu-yong Wang and a team of researchers from National University of Singapore, Nanyang Technological University, KK Women's and Children's Hospital, and Duke-NUS Graduate Medical School, in Singapore, developed a reproducible method that involves stretching a polymer thin film to produce scaffolds that can support the growth of human mesenchymal stem cells. The stretching process creates orientated 3-dimensional micro-grooves on the surface of the films, and these formations promote consistent alignment and elongation of stem cells as they grow and develop into tissues on and around the resorbable scaffold.

The authors present their work in the article, "Biomimetic 3D anisotropic geometries by uniaxial stretch of poly(?-caprolactone) films for mesenchymal stem cell proliferation, alignment and myogenic differentiation."

"The researchers developed a very elegant method to promote cell behavior," says John Jansen, DDS, PhD, Methods Co-Editor-in-Chief and Professor and Chairman, Department of Biomaterials, Radboud University Nijmegen Medical Center, The Netherlands.


Story Source:

Materials provided by Mary Ann Liebert, Inc., Publishers. Note: Content may be edited for style and length.


Journal Reference:

  1. Zu-yong Wang, Erin Yiling Teo, Mark Seow Khoon Chong, Qin-yuan Zhang, Jing Lim, Zhi-yong Zhang, Ming-hui Hong, Eng-san Thian, Jerry Kok Yen Chan, Swee-Hin Teoh. Biomimetic Three-Dimensional Anisotropic Geometries by Uniaxial Stretch of Poly(ɛ-Caprolactone) Films for Mesenchymal Stem Cell Proliferation, Alignment, and Myogenic Differentiation. Tissue Engineering Part C: Methods, 2013; 130104095453008 DOI: 10.1089/ten.tec.2012.0472

Cite This Page:

Mary Ann Liebert, Inc., Publishers. "3-D biomimetic scaffolds support regeneration of complex tissues from stem cells." ScienceDaily. ScienceDaily, 10 January 2013. <www.sciencedaily.com/releases/2013/01/130110142041.htm>.
Mary Ann Liebert, Inc., Publishers. (2013, January 10). 3-D biomimetic scaffolds support regeneration of complex tissues from stem cells. ScienceDaily. Retrieved November 29, 2024 from www.sciencedaily.com/releases/2013/01/130110142041.htm
Mary Ann Liebert, Inc., Publishers. "3-D biomimetic scaffolds support regeneration of complex tissues from stem cells." ScienceDaily. www.sciencedaily.com/releases/2013/01/130110142041.htm (accessed November 29, 2024).

Explore More

from ScienceDaily

RELATED STORIES