New! Sign up for our free email newsletter.
Science News
from research organizations

Is too much brain activity connected to Alzheimer's disease?

Date:
August 16, 2012
Source:
Public Library of Science
Summary:
High baseline levels of neuronal activity in the best connected parts of the brain may play an important role in the development of Alzheimer's disease.
Share:
FULL STORY

High baseline levels of neuronal activity in the best connected parts of the brain may play an important role in the development of Alzheimer's disease. This is the main conclusion of a new study appearing in PLoS Computational Biology from a group at VU University Medical Center in Amsterdam, the Netherlands.

In recent times, it has become clear that brain activity patterns change at an early stage in Alzheimer's disease. Moreover, there is reason to believe that, instead of being the consequence of structural damage, they might be the cause: recently, a direct influence of excessive regional neuronal activity on Alzheimer pathology was found in animal experiments. By showing that highly connected 'hub' regions (which display most Alzheimer pathology) indeed possess the highest levels of activity, the present study offers support for the unconventional view that brain dynamics may play a causal role in Alzheimer. As first author, Willem de Haan, says, "this implies that the investigation of factors regulating neuronal activity may open up novel ways to detect, elucidate and counter the disease."

Using a realistic computational model of the human cortex, the authors simulated progressive synaptic damage to brain regions based on their level of activity, and subsequently investigated the effect on the remaining network. With this 'activity dependent degeneration' model, they could not only offer an explanation for the distribution pattern of Alzheimer pathology but also reproduce a range of phenomena encountered in actual neurophysiological data of Alzheimer patients: loss and slowing of neuronal activity, loss of communication between areas, and specific changes in brain network organization.

In upcoming projects the authors plan to verify the predictions from this study in patient data, but also to continue modeling studies. They conclude that: "the use of 'computational neurology' and network theory to unite experimental results and find plausible underlying principles in the growing bulk of human brain data seems inevitable."


Story Source:

Materials provided by Public Library of Science. Note: Content may be edited for style and length.


Journal Reference:

  1. Willem de Haan, Katherine Mott, Elisabeth C. W. van Straaten, Philip Scheltens, Cornelis J. Stam. Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease. PLoS Computational Biology, 2012; 8 (8): e1002582 DOI: 10.1371/journal.pcbi.1002582

Cite This Page:

Public Library of Science. "Is too much brain activity connected to Alzheimer's disease?." ScienceDaily. ScienceDaily, 16 August 2012. <www.sciencedaily.com/releases/2012/08/120816201614.htm>.
Public Library of Science. (2012, August 16). Is too much brain activity connected to Alzheimer's disease?. ScienceDaily. Retrieved November 18, 2024 from www.sciencedaily.com/releases/2012/08/120816201614.htm
Public Library of Science. "Is too much brain activity connected to Alzheimer's disease?." ScienceDaily. www.sciencedaily.com/releases/2012/08/120816201614.htm (accessed November 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES