New! Sign up for our free email newsletter.
Science News
from research organizations

On the border between matter and anti-matter: Nanoscientists find long-sought Majorana particle

Date:
April 13, 2012
Source:
Delft University of Technology
Summary:
Scientists in the Netherlands have succeeded for the first time in detecting a Majorana particle. In the 1930s, Italian physicist Ettore Majorana deduced from quantum theory the possibility of the existence of a very special particle, a particle that is its own anti-particle: the Majorana fermion. That 'Majorana' would be right on the border between matter and anti-matter.
Share:
FULL STORY

Scientists at TU Delft's Kavli Institute and the Foundation for Fundamental Research on Matter (FOM Foundation) have succeeded for the first time in detecting a Majorana particle. In the 1930s, the brilliant Italian physicist Ettore Majorana deduced from quantum theory the possibility of the existence of a very special particle, a particle that is its own anti-particle: the Majorana fermion. That 'Majorana' would be right on the border between matter and anti-matter.

Nanoscientist Leo Kouwenhoven already caused great excitement among scientists in February by presenting the preliminary results at a scientific congress. Today, the scientists have published their research in Science. The research was financed by the FOM Foundation and Microsoft.

Quantum computer and dark matter

Majorana fermions are very interesting -- not only because their discovery opens up a new and uncharted chapter of fundamental physics; they may also play a role in cosmology. A proposed theory assumes that the mysterious 'dark matter', which forms the greatest part of the universe, is composed of Majorana fermions. Furthermore, scientists view the particles as fundamental building blocks for the quantum computer. Such a computer is far more powerful than the best supercomputer, but only exists in theory so far. Contrary to an 'ordinary' quantum computer, a quantum computer based on Majorana fermions is exceptionally stable and barely sensitive to external influences.

Nanowire

For the first time, scientists in Leo Kouwenhoven's research group managed to create a nanoscale electronic device in which a pair of Majorana fermions 'appear' at either end of a nanowire. They did this by combining an extremely small nanowire, made by colleagues from Eindhoven University of Technology, with a superconducting material and a strong magnetic field. "The measurements of the particle at the ends of the nanowire cannot otherwise be explained than through the presence of a pair of Majorana fermions," says Leo Kouwenhoven.

Particle accelerators

It is theoretically possible to detect a Majorana fermion with a particle accelerator such as the one at CERN. The current Large Hadron Collider appears to be insufficiently sensitive for that purpose but, according to physicists, there is another possibility: Majorana fermions can also appear in properly designed nanostructures. "What's magical about quantum mechanics is that a Majorana particle created in this way is similar to the ones that may be observed in a particle accelerator, although that is very difficult to comprehend," explains Kouwenhoven. "In 2010, two different groups of theorists came up with a solution using nanowires, superconductors and a strong magnetic field. We happened to be very familiar with those ingredients here at TU Delft through earlier research." Microsoft approached Leo Kouwenhoven to help them lead a special FOM programme in search of Majorana fermions, resulting in a successful outcome..

Ettore Majorana

The Italian physicist Ettore Majorana was a brilliant theorist who showed great insight into physics at a young age. He discovered a hitherto unknown solution to the equations from which quantum scientists deduce elementary particles: the Majorana fermion. Practically all theoretic particles that are predicted by quantum theory have been found in the last decades, with just a few exceptions, including the enigmatic Majorana particle and the well-known Higgs boson. But Ettore Majorana the person is every bit as mysterious as the particle. In 1938 he withdrew all his money and disappeared during a boat trip from Palermo to Naples. Whether he killed himself, was murdered or lived on under a different identity is still not known. No trace of Majorana was ever found.


Story Source:

Materials provided by Delft University of Technology. Note: Content may be edited for style and length.


Journal Reference:

  1. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science, 2012; DOI: 10.1126/science.1222360

Cite This Page:

Delft University of Technology. "On the border between matter and anti-matter: Nanoscientists find long-sought Majorana particle." ScienceDaily. ScienceDaily, 13 April 2012. <www.sciencedaily.com/releases/2012/04/120413160004.htm>.
Delft University of Technology. (2012, April 13). On the border between matter and anti-matter: Nanoscientists find long-sought Majorana particle. ScienceDaily. Retrieved January 21, 2025 from www.sciencedaily.com/releases/2012/04/120413160004.htm
Delft University of Technology. "On the border between matter and anti-matter: Nanoscientists find long-sought Majorana particle." ScienceDaily. www.sciencedaily.com/releases/2012/04/120413160004.htm (accessed January 21, 2025).

Explore More

from ScienceDaily

RELATED STORIES