New! Sign up for our free email newsletter.
Science News
from research organizations

New device exposes explosive vapors

Date:
August 16, 2011
Source:
American Institute of Physics
Summary:
Researchers have designed an ultra-portable device to detect trace amounts of explosives such as TNT. The prototype is sensitive and inexpensive, and may one day be adapted to help clear dangerous landmines.
Share:
FULL STORY

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, and now researchers in Scotland have designed a new device that could more reliably sense explosives, helping workers to identify and deactivate unexploded mines.

The prototype sensor features a thin film of polymer whose many electrons jump into higher energy levels when exposed to light. If left alone, the electrons would eventually fall back down, re-emitting light. When the 'excited' polymer is exposed to the electron-deficient molecules that are common to many explosives, however, the molecules steal some of the polymer's electrons, and so quench the light emission.

Other devices have used the change in a fluorescent polymer's light-emitting power to detect explosive vapors, but the Scottish team's prototype, described in the AIP's new journal AIP Advances, is the first to use a compact silicon-based micro-system to measure the change in the length of time an electron stays in the 'excited' higher energy state. This measurement is less affected by environmental factors, such as stray light, which should make the device more reliable. It is also an example of how the complementary properties of an organic semiconductor (the polymer) and an inorganic semiconductor (the silicon) can be combined to make novel devices, the researchers write.

The team's current prototype is not yet ready for commercialization, but future work may soon see it helping to reclaim landmine-littered land.


Story Source:

Materials provided by American Institute of Physics. Note: Content may be edited for style and length.


Journal Reference:

  1. Yue Wang, Bruce R. Rae, Robert K. Henderson, Zheng Gong, Jonathan Mckendry, Erdan Gu, Martin D. Dawson, Graham A. Turnbull, Ifor D. W. Samuel. Ultra-portable explosives sensor based on a CMOS fluorescence lifetime analysis micro-system. AIP Advances, 2011; 1 (3): 032115 DOI: 10.1063/1.3624456

Cite This Page:

American Institute of Physics. "New device exposes explosive vapors." ScienceDaily. ScienceDaily, 16 August 2011. <www.sciencedaily.com/releases/2011/08/110815113609.htm>.
American Institute of Physics. (2011, August 16). New device exposes explosive vapors. ScienceDaily. Retrieved November 21, 2024 from www.sciencedaily.com/releases/2011/08/110815113609.htm
American Institute of Physics. "New device exposes explosive vapors." ScienceDaily. www.sciencedaily.com/releases/2011/08/110815113609.htm (accessed November 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES