New! Sign up for our free email newsletter.
Science News
from research organizations

New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle

Date:
May 28, 2011
Source:
Institute of Physics
Summary:
Direct evidence of the existence of gravitational waves is something that has long eluded researchers. However, new research has suggested that adding just one of the proposed detectors in Japan, Australia and India will drastically increase the expected rate of detection.
Share:
FULL STORY

Direct evidence of the existence of gravitational waves is something that has long eluded researchers, however new research has suggested that adding just one of the proposed detectors in Japan, Australia and India will drastically increase the expected rate of detection.

In a study published May 27, 2011 in IOP Publishing's journal Classical and Quantum Gravity, Professor Bernard Schutz, of the Albert Einstein Institute, Germany, demonstrated that an additional detector would more than double the detection rate of gravitational waves and could double the amount of sky being covered.

It was estimated last year that by 2016 the existing network of four detectors would be able to detect, on average, 40 neutron-star merger events per year by monitoring the gravitational waves they produce. Using a computer analysis, this study showed that by performing optimal coherent data analysis, the network could theoretically detect 160 events per year.

The positioning of the current network actually makes such a large increase in detection rate unlikely; however Schutz has shown that using any of the three additional locations would change this dramatically.

The addition of all three new detectors would enable the detection of around 370 events a year, which could increase to 500 events after a few years of operation.

These detectors are most likely to encounter 'short bursts' of gravitational waves that arise from two stars or two black holes orbiting each other. The sheer acceleration of these types of events cause a distortion in space time -- known as a gravitational wave -- that spreads outwards like ripples moving across a lake.

Professor Schutz said, "The improvements brought about by new detectors are much bigger than the proportionate extra investment required. Even moving an existing LIGO detector to Australia brings two to four times the number of good-quality detections and also dramatically improves the direction information for the events."

"The new detector in Japan, approved last year, would add extra sensitivity and reliability and greatly improve sky coverage. Not only would we be more certain than ever of making detections, we would begin to be able to study neutron stars and gamma ray bursts with information obtainable in no other way."

Einstein's theory of general relativity describes how objects with mass bend and curve space-time. One can imagine holding out a taut bed sheet and placing a football in the centre -- the bed sheet will curve around the football, readily representing how space-time gets curved by objects with mass.

Just like the ripples moving across a lake, the distortion in space-time, caused by accelerating objects, gradually decreases in strength, so by the time they finally reach Earth they are very hard to detect.

Professor Schutz continued, "In my mind, detecting gravitational waves opens up a new way of investigating the universe. We expect frequent detections of gravitational waves from merging black holes, whose waves will carry an unmistakable signature. Since gravitational waves are the only radiation emitted by black holes, we will for the first time have a direct observation of a black hole."

"Beyond that, gravitational waves have great penetrating power, so they will allow us to see directly to the centre of the systems responsible for supernova explosions, gamma-ray bursts, and a wealth of other systems so far hidden from view."

At the moment, there are four detectors, currently being updated, that have the necessary sensitivity to measure gravitational waves. Three of these detectors exist as part of the LIGO project -- two in Hanford, Washington, and one in Livingston, Louisiana, -- whilst another detector exists in Cascina, Italy, as part of the VIRGO project.

Funding has begun for an additional detector located in Japan whilst there are further proposals for developing detectors in Australia and India. It has also been proposed to move one of the Hanford detectors to Australia.

A jointly owned British-German detector, located near Hanover, Germany, called GEO600 will begin observations for gravitational waves this summer, until the LIGO and VIRGO detectors become fully operational again.


Story Source:

Materials provided by Institute of Physics. Note: Content may be edited for style and length.


Journal Reference:

  1. Bernard F Schutz. Networks of gravitational wave detectors and three figures of merit. Classical and Quantum Gravity, 2011; DOI: 10.1088/0264-9381/28/12/125023

Cite This Page:

Institute of Physics. "New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle." ScienceDaily. ScienceDaily, 28 May 2011. <www.sciencedaily.com/releases/2011/05/110526205101.htm>.
Institute of Physics. (2011, May 28). New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2011/05/110526205101.htm
Institute of Physics. "New hope of detecting gravitational waves: Final piece of Einstein's jigsaw puzzle." ScienceDaily. www.sciencedaily.com/releases/2011/05/110526205101.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES