Gene doping detectable with a simple blood test
- Date:
- September 3, 2010
- Source:
- Universitaet Mainz
- Summary:
- German scientists have developed a blood test that can reliably detect gene doping even after 56 days. It was previously impossible to prove that an athlete had undergone gene doping.
- Share:
German scientists from Tübingen and Mainz have developed a blood test that can reliably detect gene doping even after 56 days.
Scientists at the universities in Tübingen and Mainz have developed a test that can provide conclusive proof of gene doping. "For the first time, a direct method is now available that uses conventional blood samples to detect doping via gene transfer and is still effective if the actual doping took place up to 56 days before," Professor Perikles Simon, MD, PhD from Johannes Gutenberg University Mainz, Germany explained. "This represents a relatively low-cost method of detecting several of the most common doping genes," Simon stated in the presentation of the process.
It was previously impossible to prove that an athlete had undergone gene doping. "The process of inserting individual genes in specific body cells stems from the idea of curing severe illnesses with this new technology. It was previously thought that it would only be possible to detect gene doping via gene transfer using an extremely costly indirect test procedure from the field of molecular medicine," explained gene therapist Professor Michael Bitzer, MD from the University Hospital of the Eberhard Karls University of Tübingen.
The gene doping study conducted by the scientists from Tübingen and Mainz was published in the online edition of the scientific journal Gene Therapy. According to the study, the test provides clear "yes-or-no answers" based on whether or not so-called transgenic DNA is present in blood samples. Transgenic DNA or tDNA does not stem from the person being tested but has been transferred into their body -- often via viruses -- in order to create performance-enhancing substances such as erythropoetin (EPO) for forming red blood cells.
"The body of a gene-doped athlete produces the performance-enhancing hormones itself without having to introduce any foreign substances to the body. Over time, the body becomes its own doping supplier," explained Simon. In 2006, as a member of the University Hospital in Tübingen, he developed a procedure that enables even the tiniest traces of transgenic DNA to be detected in the blood. The efficiency of this procedure has now been proven for the first time in laboratory mice. A key component of the animal procedure was a sophisticated process that was able to insert the foreign genetic material extremely specifically to the muscles around a small puncture area.
This triggers excess production of a hormone, which prompts the generation of new blood vessels. Even two months after the genes were injected into the muscles, researchers were able to differentiate clearly between the mice subjected to gene doping and those that were not. "The development of a reliable method for detecting misuse of gene transfer will be used to ensure that this new technology, for which the side effects are only partially known, is used exclusively in the treatment of severe diseases," stated Bitzer. Over the next few months, the University Hospital in Tübingen is planning a relevant therapy study for advanced tumor patients.
The safe and sensitive detection procedure developed by the scientists in Mainz and Tübingen was then proven in a so-called specificity test on 327 blood samples taken from professional and recreational athletes. Researchers now believe that athletes will no longer profit from the misuse of gene therapy for doping purposes. "At the very least, the risk of being discovered months after the gene transfer has taken place should deter even the most daring dopers," Simon believes. The World Anti Doping Agency (WADA) has financed this research over the past four years with a total of 980,000 US Dollars.
Story Source:
Materials provided by Universitaet Mainz. Note: Content may be edited for style and length.
Journal Reference:
- T. Beiter, M. Zimmermann, A. Fragasso, J. Hudemann, A.M. Niess, M. Bitzer, U.M. Lauer and P. Simon. Direct and long-term detection of gene doping in conventional blood samples. Gene Therapy, 2010; DOI: 10.1038/gt.2010.122
Cite This Page: