New! Sign up for our free email newsletter.
Science News
from research organizations

Breakthrough for the quantum simulator: When ultra-cold atoms can be anything

Date:
March 20, 2010
Source:
University of Stuttgart
Summary:
For the first time, physicists have succeeded in describing a quantum simulator realizable with current technology. The scientists have shown that the level of control needed for such a simulator can be achieved using ultra-cold atoms in a highly excited Rydberg states.
Share:
FULL STORY

For the first time, an international research team from the universities of Stuttgart, Innsbruck and Nottingham have succeeded in describing a quantum simulator realizable with current technology.

The theoretical physicists around Hendrik Weimer and Hans Peter Büchler from Stuttgart and Peter Zoller from Innsbruck present their results in Nature Physics.

The work goes back to a famous idea of Nobel laureate Richard Feynman. He realized that conventional computers lack the processing power to calculate the behavior of complex quantum systems. For the general description of a quantum spin system with 300 particles a computer would need more memory than there is available in the world; even if all the observable matter in the universe is processed into storage media. Therefore Feynman proposed to use a different quantum system as a quantum simulator. For this idea to work, the building blocks of the quantum simulator need to be controlled in a precise way in order to mimic the behavior of the simulated system.

The scientists led by Hans Peter Büchler and Peter Zoller have now been able to show that this level of control can be achieved using ultra-cold atoms in a highly excited Rydberg states. The team used the strong interactions between spatially close Rydberg atoms to tune the desired properties of the quantum simulator. "This method is a huge step towards the dream of a universal quantum simulator, which allows us to study the behavior of any other quantum system" says Büchler about the versatility of the Rydberg atoms.

Furthermore, the scientists were able show that the approach can also be used for a novel cooling technique. This allows for the creation of exotic states of matter such as a spin liquid, where magnetic order is absent even at very low temperatures. From their study physicists hope to gain novel insights about quantum many-body systems, having direct applications in condensed matter physics.

The work was conducted with in the transregional research center SFB/TRR 21 (Control of quantum correlations in tailored matter) and was supported by the German research foundation DFG and the Austrian science fund FWF.


Story Source:

Materials provided by University of Stuttgart. Note: Content may be edited for style and length.


Journal Reference:

  1. Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter Zoller, Hans Peter Büchler. A Rydberg Quantum Simulator. Nature Physics, 2010; DOI: 10.1038/NPHYS1614

Cite This Page:

University of Stuttgart. "Breakthrough for the quantum simulator: When ultra-cold atoms can be anything." ScienceDaily. ScienceDaily, 20 March 2010. <www.sciencedaily.com/releases/2010/03/100315231554.htm>.
University of Stuttgart. (2010, March 20). Breakthrough for the quantum simulator: When ultra-cold atoms can be anything. ScienceDaily. Retrieved January 11, 2025 from www.sciencedaily.com/releases/2010/03/100315231554.htm
University of Stuttgart. "Breakthrough for the quantum simulator: When ultra-cold atoms can be anything." ScienceDaily. www.sciencedaily.com/releases/2010/03/100315231554.htm (accessed January 11, 2025).

Explore More

from ScienceDaily

RELATED STORIES