New! Sign up for our free email newsletter.
Science News
from research organizations

Nanoparticle 'Smart Bomb' Targets Drug Delivery To Cancer Cells

Date:
February 16, 2009
Source:
North Carolina State University
Summary:
Researchers have successfully modified a common plant virus to deliver drugs only to specific cells inside the human body, without affecting surrounding tissue. These tiny "smart bombs" -- each one thousands of times smaller than the width of a human hair -- could lead to more effective chemotherapy treatments with greatly reduced, or even eliminated, side effects.
Share:
FULL STORY

Researchers at North Carolina State University have successfully modified a common plant virus to deliver drugs only to specific cells inside the human body, without affecting surrounding tissue. These tiny "smart bombs" - each one thousands of times smaller than the width of a human hair - could lead to more effective chemotherapy treatments with greatly reduced, or even eliminated, side effects.

Drs. Stefan Franzen, professor of chemistry, and Steven Lommel, professor of plant pathology and genetics, collaborated on the project, utilizing the special properties of a fairly common and non-toxic plant virus as a means to convey drugs to the target cells.

The researchers say that the virus is appealing in both its ability to survive outside of a plant host and its built-in "cargo space" of 17 nanometers, which can be used to carry chemotherapy drugs directly to tumor cells. The researchers deploy the virus by attaching small proteins, called signal peptides, to its exterior that cause the virus to "seek out" particular cells, such as cancer cells. Those same signal peptides serve as "passwords" that allow the virus to enter the cancer cell, where it releases its cargo.

"We had tried a number of different nanoparticles as cell-targeting vectors," Franzen says. "The plant virus is superior in terms of stability, ease of manufacture, ability to target cells and ability to carry therapeutic cargo."

Calcium is the key to keeping the virus' cargo enclosed. When the virus is in the bloodstream, calcium is also abundant. Inside individual cells, however, calcium levels are much lower, which allows the virus to open, delivering the cancer drugs only to the targeted cells.

"Another factor that makes the virus unique is the toughness of its shell," Lommel says. "When the virus is in a closed state, nothing will leak out of the interior, and when it does open, it opens slowly, which means that the virus has time to enter the cell nucleus before deploying its cargo, which increases the drug's efficacy."

The researchers believe that their method will alleviate the side effects of common chemotherapy treatments, while maximizing the effectiveness of the treatment.


Story Source:

Materials provided by North Carolina State University. Note: Content may be edited for style and length.


Cite This Page:

North Carolina State University. "Nanoparticle 'Smart Bomb' Targets Drug Delivery To Cancer Cells." ScienceDaily. ScienceDaily, 16 February 2009. <www.sciencedaily.com/releases/2009/02/090212125139.htm>.
North Carolina State University. (2009, February 16). Nanoparticle 'Smart Bomb' Targets Drug Delivery To Cancer Cells. ScienceDaily. Retrieved December 26, 2024 from www.sciencedaily.com/releases/2009/02/090212125139.htm
North Carolina State University. "Nanoparticle 'Smart Bomb' Targets Drug Delivery To Cancer Cells." ScienceDaily. www.sciencedaily.com/releases/2009/02/090212125139.htm (accessed December 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES