Carbon Dioxide Capture And Storage: Grasping At Straws In The Climate Debate?
- Date:
- May 9, 2008
- Source:
- Linköping University
- Summary:
- Great hopes are being placed on undeveloped technology. Capturing and storing carbon dioxide is predicted to be one of the most important measures to counter the threats to our climate. But the technology still hasn't been tested in full scale, and the complications and risks it entails may have been grossly underestimated.
- Share:
Great hopes are being placed on undeveloped technology. Capturing and storing carbon dioxide is predicted to be one of the most important measures to counter the threats to our climate. But the technology still hasn’t been tested in full scale, and the complications and risks it entails may have been grossly underestimated.
This is the conclusion drawn in Anders Hansson’s dissertation at the Department of Technology and Social Change, Linköping University, in Sweden. He studied documents from the EU and the UN Climate Panel about CCS (Carbon dioxide Capture and Storing), as well as some of the research they are based on. The UN Climate Panel released its most thoroughly considered report ever last year, supported by an uncommonly unanimous research community.
The Climate Panel sees CCS as offering great potential. In various scenarios it accounts for between 15 and 55 percent of the reduction of greenhouse gases by 2100. The EU also is promoting CCS, suggesting that it be included in the trading of emission rights, for example. Carbon dioxide that is captured in energy production, for example, and is placed in long-term storage in the crust of the earth would thus be counted as never having been produced, according to the EU proposal. The consequence is that coal power, which is the biggest area of application for CCS, is being called sustainable coal and is equated in many respects with renewable energy.
The problem is, according to Anders Hansson, that CCS is still a relatively untested method.
“There are a number of small facilities, in Norway, for instance, where they capture and store a million tons of carbon dioxide per year. Swedish Vattenfall is starting a pilot facility in eastern German this summer.”
Globally, a total of some millions of tons per year is being stored today within the framework of CCS. But to live up to the hopes placed on CCS requires the storage of several billion tons. In other words, this involves gargantuan volumes. In fact, carbon dioxide would be the world’s largest transported good.
“In full scale this technology only exists in the imaginations of the people developing it,” says Anders Hansson. “It’s overly optimistic to place such great faith in it, considering all the uncertainties found in the scientific literature.”
Several researchers studying CCS point out themselves that their models and scenarios in many respects are based on insufficient factual foundations, unrealistic assumptions, and major oversimplifications. The economic calculations, which are often carried out with a hundred-year horizon, rarely factor in external and social costs, which may entail that the costs are hugely underestimated. The EU is counting on CCS to be working in full scale in about 15 years. But despite the fact that this technology will touch the lives of many people, very few people know much about it and its projected scope. Interview-based studies have shown that at most only 20 percent of the general public has heard of CCS.
“CCS needs to become known and be debated,” says Anders Hansson. “Otherwise there is a risk of a backlash similar to what happened with nuclear power.”
This has already occurred in California, where popular protests last year stopped a law about carbon dioxide storage.
Anders Hansson also wonders whether CCS would delay or hasten long-term sustainable solutions to energy and climate problems.
“After all, we all agree that fossil fuels will run out. Renewable energy is the only long-term path. In that perspective, a large-scale commitment to CCS seems to be an unnecessary detour.”
Story Source:
Materials provided by Linköping University. Note: Content may be edited for style and length.
Cite This Page: