New! Sign up for our free email newsletter.
Science News
from research organizations

Genetic Research In Sport: Benefits And Ethical Concerns

Date:
September 21, 2007
Source:
University of Bath
Summary:
Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, according to a team of scientists. However, ethical concerns, such as whether seeking information about differences between ethnic groups could be perceived as racist research, need to be properly addressed, they warn.
Share:
FULL STORY

Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, a leading group of scientists reported.

However, ethical concerns, such as whether seeking information about differences between ethnic groups could be perceived as racist research, need to be properly addressed, they warn.

Their recommendations are published in a ‘position stand’ on genetic research and testing launched at the British Association of Sport & Exercise Sciences annual meeting.

They call for more genetic research in the sport and exercise sciences because of the anticipated benefits for public health, but want researchers to take a more active role in debating the implications of their work with the public.

“If a powerful muscle growth gene was identified, on the one hand this could help develop training programmes that increase muscle size and strength in athletes, but even more importantly the knowledge could be used to develop exercise programmes or drugs to combat muscle wasting in old age,” said Dr Alun Williams from Manchester Metropolitan University, one of the report’s authors.

“We, as scientists investigating genetics, acknowledge a public concern about some genetic research and we believe scientists need to engage in public in debates about the potential benefits of their research.

“Research into the athletic success of East African distance runners or sprinters of West African ancestry might be perceived as unethical.

“But understanding the limits of human exercise capacity in sport could lead to the development of treatments for a range of diseases like cancer and cardiovascular disease.”

The potential applications of genetic testing in sport and exercise also raise some ethical concerns, for example in identifying potential athletic ability before birth.

An Australian company already offers the first genetic performance test (for the ACTN3 gene) which has been linked to sprint and power performance.

The report authors are sceptical about whether this test is useful but anticipate that more advanced versions of these tests will be available in future.

“We are not yet at a point where we can identify a potential future Olympic champion from genetic tests but we may not be very far away,” said Dr Williams, who wrote the report with Drs Henning Wackerhage (Aberdeen University), Andy Miah (University of Paisley), Roger Harris (University of Chichester) and Hugh Montgomery (University College London).

They highlight two dangers of genetic performance tests. Firstly, genetic performance tests might later be linked to disease. For example, a muscle growth gene may later be linked to cancer growth.

“Not all people may want to know, while young that they are at increased risk of cancer by early middle age, but they might inadvertently become aware of that just because they had a ‘sport gene’ test,” said Dr Williams.

Secondly, genetic performance tests can be performed even before birth and this may lead to the selection of foetuses or to abortions based on athletic potential.

The report recommends genetic counselling and that the testing should be confined to mature individuals who fully understand the relevant issues.

Genetic tests might also be used to screen for health risks during sport such as genes that are linked to sudden cardiac death.

Genetic tests for sudden cardiac death are already available but the report recommends that such testing should not be enforced on athletes.

Problems with mandatory testing are highlighted by the case of the basketball player Eddy Curry, who had an irregular heart beat.

Curry was asked by his club, the Chicago Bulls, to perform a predictive genetic test for a heart condition. The athlete refused and was traded to the New York Knicks who did not make such a demand.

In future, genetic tests might be used to identify those that respond with the biggest drop in cholesterol, blood pressure or glucose to exercise.

In a personalised medicine approach, such tests could be used to select subjects for therapeutic exercise programmes but scientists are concerned that this might undermine the ‘exercise for all’ message that already seems difficult to get across to the public.

The authors say that genetic testing might also be used to detect gene doping, which may be a real threat by the time of the London Olympics in 2012, or to show that positive doping tests are the result of a genetic mutation in an athlete.

The report recommends that genetic testing should be used for anti-doping testing as long as the genetic samples are destroyed after testing.


Story Source:

Materials provided by University of Bath. Note: Content may be edited for style and length.


Cite This Page:

University of Bath. "Genetic Research In Sport: Benefits And Ethical Concerns." ScienceDaily. ScienceDaily, 21 September 2007. <www.sciencedaily.com/releases/2007/09/070913132916.htm>.
University of Bath. (2007, September 21). Genetic Research In Sport: Benefits And Ethical Concerns. ScienceDaily. Retrieved November 25, 2024 from www.sciencedaily.com/releases/2007/09/070913132916.htm
University of Bath. "Genetic Research In Sport: Benefits And Ethical Concerns." ScienceDaily. www.sciencedaily.com/releases/2007/09/070913132916.htm (accessed November 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES