New! Sign up for our free email newsletter.
Science News
from research organizations

Physicists negate century-old assumption regarding neurons and brain activity

New types of experiments call activity of hundreds of labs and thousands of scientific studies in neuroscience into question, and could impact research into the origin of degenerative diseases

Date:
December 21, 2017
Source:
Bar-Ilan University
Summary:
Neurons are the basic computational building blocks that compose our brain. According to the neuronal computational scheme used for over a century, each neuron functions as a centralized excitable element. Using new types of experiments on neuronal cultures, scientists have demonstrated that this assumption regarding brain activity is mistaken. Their results call for a re-examination of neuronal functionalities beyond the traditional framework and, in particular, for an examination into the origin of degenerative diseases.
Share:
FULL STORY

Neurons are the basic computational building blocks that compose our brain. Their number is approximately one Tera (trillion), similar to Tera-bits in midsize hard discs. According to the neuronal computational scheme, which has been used for over a century, each neuron functions as a centralized excitable element. The neuron accumulates its incoming electrical signals from connecting neurons through several terminals, and generates a short electrical pulse, known as a spike, when its threshold is reached.

Using new types of experiments on neuronal cultures, a group of scientists, led by Prof. Ido Kanter, of the Department of Physics at Bar-Ilan University, has demonstrated that this century-old assumption regarding brain activity is mistaken.

In an article published today in the journal Scientific Reports, the researchers go against conventional wisdom to show that each neuron functions as a collection of excitable elements, where each excitable element is sensitive to the directionality of the origin of the input signal. Two weak inputs from different directions (e.g., "left" and "right") will not sum up to generate a spike, while a strong input from "left" will generate a different spike waveform than that from the "right."

"We reached this conclusion using a new experimental setup, but in principle these results could have been discovered using technology that has existed since the 1980s. The belief that has been rooted in the scientific world for 100 years resulted in this delay of several decades," said Prof. Kanter and his team of researchers, including Shira Sardi, Roni Vardi, Anton Sheinin, and Amir Goldental.

The new results call for a re-examination of neuronal functionalities beyond the traditional framework and, in particular, for an examination into the origin of degenerative diseases. Neurons which are incapable of differentiating between "left" and "right" -- similar to distortions in the entire human body -- might be a starting point for discovering the origin of these diseases.

The new realization for the computational scheme of a neuron calls into question the spike sorting technique which is at the center of activity of hundreds of laboratories and thousands of scientific studies in neuroscience. This method was mainly invented to overcome the technological barrier to measure the activity from many neurons simultaneously, using the assumption that each neuron tends to fire spikes of a particular waveform which serves as its own electrical signature. However, this assumption, which resulted from enormous scientific efforts and resources, is now questioned by the work of Kanter's lab.

This research is supported in part by the TELEM grant of the Council for Higher Education in Israel.


Story Source:

Materials provided by Bar-Ilan University. Note: Content may be edited for style and length.


Journal Reference:

  1. Shira Sardi, Roni Vardi, Anton Sheinin, Amir Goldental, Ido Kanter. New Types of Experiments Reveal that a Neuron Functions as Multiple Independent Threshold Units. Scientific Reports, 2017; 7 (1) DOI: 10.1038/s41598-017-18363-1

Cite This Page:

Bar-Ilan University. "Physicists negate century-old assumption regarding neurons and brain activity." ScienceDaily. ScienceDaily, 21 December 2017. <www.sciencedaily.com/releases/2017/12/171221101356.htm>.
Bar-Ilan University. (2017, December 21). Physicists negate century-old assumption regarding neurons and brain activity. ScienceDaily. Retrieved December 25, 2024 from www.sciencedaily.com/releases/2017/12/171221101356.htm
Bar-Ilan University. "Physicists negate century-old assumption regarding neurons and brain activity." ScienceDaily. www.sciencedaily.com/releases/2017/12/171221101356.htm (accessed December 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES