Physicists create magnetic state in atomic layers of transition metal oxide
- Date:
- January 22, 2016
- Source:
- University of Arkansas, Fayetteville
- Summary:
- Physicists have created a magnetic state in a few atomic layers of artificially synthesized materials known as transition metal oxides.
- Share:
Physicists at the University of Arkansas and their collaborators have created a magnetic state in a few atomic layers of artificially synthesized materials known as transition metal oxides.
The research team published its findings on Thursday, Jan. 21, in Nature Communications, an online journal published by the journal Nature.
"The key to the next generation of electronics is fabricating transistors that are multifunctional, meaning that a single electric pulse should be able to trigger multiple actions. For example, they can transition between electronic and magnetic states," said Jak Chakhalian, a professor of physics who directs the Artificial Quantum Materials Laboratory at the U of A.
"This work opens the door to devices based on junctions of correlated electronic materials beyond our current semiconductor devices," he said.
Yanwei Cao, a postdoctoral physics research associate in the Artificial Quantum Materials Lab, found a way to produce a novel magnetic state in a few atomic sheets of a transition metal oxide composed of lanthanum and titanium and nickel. He conducted the experiments at the University of Arkansas and Advanced Photon Source at Argonne National Laboratory near Chicago.
The research team included U of A postdoctoral research associates Michael Kareev and Srimanta Middey, doctoral student Xiaoran Liu and recent doctoral graduate Derek Meyers, now at Brookhaven National Laboratory. The team also included Debashish Chowdhury at the Indian Institute of Technology in Kanpur, India; and John W. Freeland, Phillip Ryan and Jong-Woo Kim of the Advanced Photon Source.
In 2014, Chakhalian was selected as a quantum materials investigator for the Gordon and Betty Moore Foundation. His selection came with a $1.8 million grant, a portion of which funded the Nature Communications study.
Story Source:
Materials provided by University of Arkansas, Fayetteville. Note: Content may be edited for style and length.
Journal Reference:
- Yanwei Cao, Xiaoran Liu, M. Kareev, D. Choudhury, S. Middey, D. Meyers, J.-W. Kim, P. J. Ryan, J.W. Freeland, J. Chakhalian. Engineered Mott ground state in a LaTiO3 δ/LaNiO3 heterostructure. Nature Communications, 2016; 7: 10418 DOI: 10.1038/ncomms10418
Cite This Page: