New! Sign up for our free email newsletter.
Science News
from research organizations

Fine line between breast cancer, normal tissues

Date:
September 22, 2014
Source:
Brigham and Women's Hospital
Summary:
A tool has been successfully tested that will help surgeons better distinguish cancerous breast tissue from normal tissue, thereby decreasing the chances for repeat operations. The tool, known as DESI mass spectrometry imaging, works by turning molecules into electrically charged versions of themselves, called ions, so that they can be identified by their mass.
Share:
FULL STORY

Up to 40 percent of patients undergoing breast cancer surgery require additional operations because surgeons may fail to remove all the cancerous tissue in the initial operation. However, researchers at Brigham and Women's Hospital (BWH) have successfully tested a tool they developed that will help surgeons better distinguish cancerous breast tissue from normal tissue, thereby decreasing the chances for repeat operations.

The study is published online the week of September 22, 2014 in the Proceedings of the National Academy of Sciences.

The tool, known as DESI mass spectrometry imaging (or Desorption ElectroSpray Ionization mass spectrometry imaging), works by turning molecules into electrically charged versions of themselves, called ions, so that they can be identified by their mass. By analyzing the mass of the ions, the contents of a tissue sample can then be identified. The tool sprays a microscopic stream of charged solvent onto the tissue surface to gather information about its molecular makeup and produces a color-coded image revealing the nature and concentration of tumor cells.

In this particular case, the researchers used DESI mass spectrometry imaging to look at the distribution and amounts of fatty acid substances, called lipids, within breast tissue and normal tissue from 61 samples obtained from 14 breast cancer patients that underwent mastectomy. A software program was used to characterize the breast cancer tumors and detect boundaries between healthy and cancerous tissue.

The researchers found that several fatty acids, such as oleic acid, were more abundant in breast cancer tissue compared to normal tissue. The results were also confirmed using traditional pathology methods to test for accuracy.

"Our findings demonstrate the feasibility of classifying cancerous and normal breast tissues using DESI mass spectrometry imaging," said Nathalie Agar, PhD, director of the Surgical Molecular Imaging Laboratory, BWH Departments of Neurosurgery and Radiology, senior study author. "The results may help us to move forward in improving this method so that surgeons can use it to rapidly detect residual cancer tissue during breast cancer surgery, hopefully decreasing the need for multiple operations."


Story Source:

Materials provided by Brigham and Women's Hospital. Note: Content may be edited for style and length.


Journal Reference:

  1. David Calligaris, Diana Caragacianu, Xiaohui Liu, Isaiah Norton, Christopher J. Thompson, Andrea L. Richardson, Mehra Golshan, Michael L. Easterling, Sandro Santagata, Deborah A. Dillon, Ferenc A. Jolesz, and Nathalie Y. R. Agar. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. PNAS, September 2014 DOI: 10.1073/pnas.1408129111

Cite This Page:

Brigham and Women's Hospital. "Fine line between breast cancer, normal tissues." ScienceDaily. ScienceDaily, 22 September 2014. <www.sciencedaily.com/releases/2014/09/140922152842.htm>.
Brigham and Women's Hospital. (2014, September 22). Fine line between breast cancer, normal tissues. ScienceDaily. Retrieved December 22, 2024 from www.sciencedaily.com/releases/2014/09/140922152842.htm
Brigham and Women's Hospital. "Fine line between breast cancer, normal tissues." ScienceDaily. www.sciencedaily.com/releases/2014/09/140922152842.htm (accessed December 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES