A mimic of 'good cholesterol' could treat cardiovascular, other diseases
- Date:
- October 30, 2013
- Source:
- American Chemical Society
- Summary:
- A new type of "good cholesterol," made in the lab, could one day deliver drugs to where they are needed in the body to treat disease or be used in medical imaging, according to scientists. The report states that the high-density lipoprotein mimic is easy to make in large amounts.
- Share:
A new type of "good cholesterol," made in the lab, could one day deliver drugs to where they are needed in the body to treat disease or be used in medical imaging, according to scientists. Their report on the high-density lipoprotein (HDL) mimic, which is easy to make in large amounts, appears in the journal ACS Nano.
Zahi A. Fayad, Robert Langer, YongTae (Tony) Kim, Francois Fay, Willem Mulder and colleagues explain that HDL is a natural nanoparticle that carries cholesterol throughout the body. Because it acts like a scavenger, collecting cholesterol and taking it to the liver for breakdown, HDL has emerged from being simply a marker for cardiovascular disease -- the number one killer of men and women in America -- to being a therapeutic agent. Clinical trials are testing its potential to combat atherosclerosis, the build-up of plaques in blood vessels that can lead to heart attacks or strokes. Scientists are also exploring new ways to use it for drug delivery. But HDL is complex and comes in many varieties. It takes several labor-intensive steps to get a uniform collection of these particles with current methods, which aren't easily scaled up for clinical applications. That's why Fayad and Langer's groups devised a new and improved method for making HDL-like particles.
The scientists showed that microfluidics -- the same technology that enabled the invention of inkjet printers -- allowed them to make material called µHDL that looks and acts like HDL in a single, rapid step. Not only does this material offer a possible, easy new way to treat cardiovascular disease, but the researchers also attached drug compounds, as well as dyes and nanocrystals used in medical imaging (such as those used for MRIs and CT scans), to the particles.
Story Source:
Materials provided by American Chemical Society. Note: Content may be edited for style and length.
Journal Reference:
- YongTae Kim, Francois Fay, David P. Cormode, Brenda L. Sanchez-Gaytan, Jun Tang, Elizabeth J. Hennessy, Mingming Ma, Kathryn Moore, Omid C. Farokhzad, Edward Allen Fisher, Willem J. M. Mulder, Robert Langer, Zahi A. Fayad. Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics. ACS Nano, 2013; 131003133321000 DOI: 10.1021/nn4039063
Cite This Page: