New! Sign up for our free email newsletter.
Science News
from research organizations

Superfast switching of quantum light sources

Date:
September 27, 2013
Source:
University of Twente
Summary:
Usually, an elementary light source – such as an excited atom or molecule – emits light of a particular color at an unpredictable instance in time. Recently, however, scientists have shown that a light source can be coaxed to emit light at a desired moment in time, within an ultrashort burst. The superfast switching of a light source has applications in fast stroboscopes without laser speckle, in the precise control of quantum systems and for ultrasecure communication using quantum cryptography.
Share:
FULL STORY

Usually, an elementary light source -- such as an excited atom or molecule -- emits light of a particular color at an unpredictable instance in time. Recently, however, scientists from the MESA+ Institute for Nanotechnology of the UT, FOM and the Institute for Nanoscience and Cryogenics (CEA/INAC) in France have shown that a light source can be coaxed to emit light at a desired moment in time, within an ultrashort burst. The superfast switching of a light source has applications in fast stroboscopes without laser speckle, in the precise control of quantum systems and for ultrasecure communication using quantum cryptography.

The theoretical results were published in Optics Express.

Spontaneous emission of light from excited sources, such as atoms, molecules or quantum dots, is a fundamental process with many applications in modern technology, such as LEDs and lasers. As the term 'spontaneous emission' indicates, the emission is random in nature and it is therefore impossible to predict the exact emission time of a photon. However, for several applications it is desirable to receive single photons exactly when they are needed with as little uncertainty as possible. This property is crucial for ultra-secure communication using quantum cryptography and in quantum computers. Therefore, the important goal is to fabricate a quantum light source such that it emits a single photon exactly at a desired moment in time.

Switching light emission

The average emission time of quantum light sources can be reduced by locating them in various nanostructures, like optical resonators or waveguides. But the distribution of emission times is always exponential in time in a usual stationary environment. In addition, the smallest uncertainty in the emission time is limited by both the maximum intensity in the resonator and the variations in the preparation time of the emitter. The Dutch-French team proposes to overcome these limitations by quickly switching the resonator length, in which the light source is located. The time duration of the switch should be much shorter than the average emission time. The result is that the favored color of the resonator only matches the emission color of the light source within a short time interval. Only within this short time frame are the photons emitted by the light source into the resonator.

Ultrafast light source

The researchers propose to use quantum dot light sources, which can easily be integrated in semiconductor optical resonators with lengths on the order of microns. The switching of the resonator will be achieved by shining an ultrashort laser pulse at the micropillar resonator during the emission time of the quantum dots. This quickly changes the refractive in the resonator and thereby the effective resonator length. The switching time can be directly controlled by the arrival time of the short laser pulse and by the lifetime of the excited electrons. These controlled light switches have great prospects for creating incoherent ultrafast light sources for fast stroboscopes without laser speckle, in quantum cryptography, in quantum information and for studying ultrafast cavity Quantum electrodynamics.


Story Source:

Materials provided by University of Twente. Note: Content may be edited for style and length.


Journal Reference:

  1. Henri Thyrrestrup, Alex Hartsuiker, Jean-Michel Gérard, Willem L. Vos. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. Optics Express, 2013; 21 (20): 23130 DOI: 10.1364/OE.21.023130

Cite This Page:

University of Twente. "Superfast switching of quantum light sources." ScienceDaily. ScienceDaily, 27 September 2013. <www.sciencedaily.com/releases/2013/09/130927092348.htm>.
University of Twente. (2013, September 27). Superfast switching of quantum light sources. ScienceDaily. Retrieved November 24, 2024 from www.sciencedaily.com/releases/2013/09/130927092348.htm
University of Twente. "Superfast switching of quantum light sources." ScienceDaily. www.sciencedaily.com/releases/2013/09/130927092348.htm (accessed November 24, 2024).

Explore More

from ScienceDaily

RELATED STORIES