New! Sign up for our free email newsletter.
Science News
from research organizations

World's most powerful engine blazes path for space launch system advanced propulsion

Date:
January 26, 2013
Source:
NASA
Summary:
To help develop the nation's future heavy lift rocket, NASA resurrected the world's most powerful rocket engine ever flown -- the mighty F-1 that powered the Saturn V rocket-- and test fired its gas generator.
Share:
FULL STORY

To help develop the nation's future heavy lift rocket, NASA resurrected the world's most powerful rocket engine ever flown -- the mighty F-1 that powered the Saturn V rocket-- and test fired its gas generator today at the Marshall Space Flight Center in Huntsville, Ala.

NASA engineers ran the gas generator at the Marshall Center's Test Stand 116. The test is part of a series that will push the gas generator to limits beyond prior Apollo-era tests. Modern instruments on the test stand measured performance and combustion properties to allow engineers a starting point for creating a new, more affordable, advanced propulsion system.

"Our young engineers are getting their hands dirty by working with one of NASA's most famous engines," said Tom Williams, Director of the Propulsion Systems Department in Marshall Engineering Directorate. "These tests are only the beginning. As Space Launch System (SLS) research activities progress, these young NASA engineers will continue work with our industry partners to test and evaluate the benefits of using a powerful propulsion system fueled by liquid oxygen and rocket grade kerosene, a propellant we haven't tested with in some time."

The gas generator tested at Marshall on January 29 is a key F-1 rocket component that burns liquid oxygen and kerosene and is the part of the engine responsible for supplying power to drive the giant turbopump. The gas generator is often one of the first pieces designed on a new engine because it is a key part for determining the engine's size, which is a factor in the engine's power and ability to lift heavy payloads and send them to space.

A video of the test is available at: http://www.nasa.gov/multimedia/videogallery/index.html?media_id=158899711

NASA's Space Launch System will provide an entirely new capability for human exploration beyond low Earth orbit. The initial 77-ton (70-metric-ton) SLS configuration will use two 5-segment solid rocket boosters similar to the boosters that helped power the space shuttle to orbit. The evolved 143-ton (130-metric-ton) SLS vehicle will require an advanced booster with more thrust than any existing U.S. liquid- or solid-fueled boosters. Last year, NASA awarded three contracts aimed at improving the affordability, reliability and performance of the rocket's advanced booster, including one focused on the F-1 engine.

"It's important that our workforce get hands on experience on systems like the F-1 gas generator as it helps make them smart buyers, and good stewards of what we procure from industry," said Chris Crumbly, manager of the SLS Advanced Development Office at the Marshall Center. "As we look to the future advanced boosters for SLS we are eager to see what our partners in industry can provide as far as a more powerful and affordable solution."


Story Source:

Materials provided by NASA. Note: Content may be edited for style and length.


Cite This Page:

NASA. "World's most powerful engine blazes path for space launch system advanced propulsion." ScienceDaily. ScienceDaily, 26 January 2013. <www.sciencedaily.com/releases/2013/01/130126093208.htm>.
NASA. (2013, January 26). World's most powerful engine blazes path for space launch system advanced propulsion. ScienceDaily. Retrieved November 22, 2024 from www.sciencedaily.com/releases/2013/01/130126093208.htm
NASA. "World's most powerful engine blazes path for space launch system advanced propulsion." ScienceDaily. www.sciencedaily.com/releases/2013/01/130126093208.htm (accessed November 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES