Brain cooling to treat epilepsy moves closer to human application
- Date:
- December 2, 2012
- Source:
- American Epilepsy Society (AES)
- Summary:
- Neuroscientists have reported that chronic focal brain cooling suppresses seizures during wakefulness and achieves the effect without significantly affecting brain function. Their research, and that of others in the field, provides critical evidence that this approach to seizure control has reached a stage where testing in humans will soon be possible.
- Share:
Neuroscientists from Japan's Yamaguchi University have reported during the 66th annual scientific meeting of the American Epilepsy Society (AES) that chronic focal brain cooling suppresses seizures during wakefulness and achieves the effect without significantly affecting brain function. Their research, and that of others in the field, provides critical evidence that this approach to seizure control has reached a stage where testing in humans will soon be possible.
Focal brain cooling is well established as an effective method for suppressing seizures. But the technology for creating a practical device with potential clinical application has only recently become available and tested in rodents. More evidence from large animals and humans is needed prior to testing in clinical trials for drug-resistant epilepsy.
The Yamaguchi researchers implanted two feline and two non-human primates with a titanium cooling plate, or heat exchanger. The brain cooling device was placed in contact with the brain surface over cortex areas responsible for movement and sensation. Seizures were then induced in the motor cortex. Brain wave recordings to assess seizure activity and temperature recordings were performed under wakefulness. (Abstract #3.056)
According to Masami Fujii, M.D.,Ph.D., and Takao Inoue, Ph.D., and Michiyasu Suzuki, M.D., Ph.D., who presented the report, seizure discharges were significantly suppressed at 15˚C (59˚F).
"The results of our study suggest that focal brain cooling has a strong effect to suppress the epileptiform seizures under the awake condition," Dr. Fujii said. "Moreover, implantation of the device for at least five months did not result in detrimental changes in brain tissue subjected to cooling compared to tissue from a similar site in the opposing hemisphere."
Story Source:
Materials provided by American Epilepsy Society (AES). Note: Content may be edited for style and length.
Cite This Page: