New! Sign up for our free email newsletter.
Science News
from research organizations

Energy-dense biofuel from cellulose close to being economical

Date:
June 4, 2012
Source:
Purdue University
Summary:
A new process for creating biofuels has shown potential to be cost-effective for production scale, opening the door for moving beyond the laboratory setting.
Share:
FULL STORY

A new Purdue University-developed process for creating biofuels has shown potential to be cost-effective for production scale, opening the door for moving beyond the laboratory setting.

A Purdue economic analysis shows that the cost of the thermo-chemical H2Bioil method is competitive when crude oil is about $100 per barrel when using certain energy methods to create hydrogen needed for the process. If a federal carbon tax were implemented, the biofuel would become even more economical.

H2Bioil is created when biomass, such as switchgrass or corn stover, is heated rapidly to about 500 degrees Celcius in the presence of pressurized hydrogen. Resulting gases are passed over catalysts, causing reactions that separate oxygen from carbon molecules, making the carbon molecules high in energy content, similar to gasoline molecules.

The conversion process was created in the lab of Rakesh Agrawal, Purdue's Winthrop E. Stone Distinguished Professor of Chemical Engineering. He said H2Bioil has significant advantages over traditional standalone methods used to create fuels from biomass.

"The process is quite fast and converts entire biomass to liquid fuel," Agrawal said. "As a result, the yields are substantially higher. Once the process is fully developed, due to the use of external hydrogen, the yield is expected to be two to three times that of the current competing technologies."

The economic analysis, published in the June issue of Biomass Conversion and Biorefinery, shows that the energy source used to create hydrogen for the process makes all the difference when determining whether the biofuel is cost-effective. Hydrogen processed using natural gas or coal makes the H2Bioil cost-effective when crude oil is just over $100 per barrel. But hydrogen derived from other, more expensive, energy sources -- nuclear, wind or solar -- drive up the break-even point.

"We're in the ballpark," said Wally Tyner, Purdue's James and Lois Ackerman Professor of Agricultural Economics. "In the past, I have said that for biofuels to be competitive, crude prices would need to be at about $120 per barrel. This process looks like it could be competitive when crude is even a little cheaper than that."

Agrawal said he and colleagues Fabio Ribeiro, a Purdue professor of chemical engineering, and Nick Delgass, Purdue's Maxine Spencer Nichols Professor of Chemical Engineering, are working to develop catalysts needed for the H2Bioil conversion processes. The method's initial implementation has worked on a laboratory scale and is being refined so it would become effective on a commercial scale.

"This economic analysis shows us that the process is viable on a commercial scale," Agrawal said. "We can now go back to the lab and focus on refining and improving the process with confidence."

The model Tyner used assumed that corn stover, switchgrass and miscanthus would be the primary feedstocks. The analysis also found that if a federal carbon tax were introduced, driving up the cost of coal and natural gas, more expensive methods for producing hydrogen would become competitive.

"If we had a carbon tax in the future, the break-even prices would be competitive even for nuclear," Tyner said. "Wind and solar, not yet, but maybe down the road."

The U.S. Department of Energy and the Air Force Office of Scientific Research funded the research. Agrawal and his collaborators received a U.S. patent for the conversion process.


Story Source:

Materials provided by Purdue University. Original written by Brian Wallheimer. Note: Content may be edited for style and length.


Journal Reference:

  1. Navneet R. Singh, Dharik S. Mallapragada, Rakesh Agrawal, Wallace E. Tyner. Economic analysis of novel synergistic biofuel (H2Bioil) processes. Biomass Conversion and Biorefinery, 2012; 2 (2): 141 DOI: 10.1007/s13399-012-0043-5

Cite This Page:

Purdue University. "Energy-dense biofuel from cellulose close to being economical." ScienceDaily. ScienceDaily, 4 June 2012. <www.sciencedaily.com/releases/2012/06/120604181954.htm>.
Purdue University. (2012, June 4). Energy-dense biofuel from cellulose close to being economical. ScienceDaily. Retrieved November 13, 2024 from www.sciencedaily.com/releases/2012/06/120604181954.htm
Purdue University. "Energy-dense biofuel from cellulose close to being economical." ScienceDaily. www.sciencedaily.com/releases/2012/06/120604181954.htm (accessed November 13, 2024).

Explore More

from ScienceDaily

RELATED STORIES