New! Sign up for our free email newsletter.
Science News
from research organizations

Graphite enters different states of matter in ultrafast experiment

Date:
May 16, 2012
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
For the first time, scientists have seen an X-ray-irradiated mineral go to two different states of matter in about 40 femtoseconds. Scientists heated graphite to induce a transition from solid to liquid and to warm-dense plasma.
Share:
FULL STORY

For the first time, scientists have seen an X-ray-irradiated mineral go to two different states of matter in about 40 femtoseconds (a femtosecond is one quadrillionth of a second).

Using the Linac Coherent Light Source (LCLS) X-ray Free-Electron Laser (XFEL) at SLAC National Accelerator Laboratory at Stanford, Stefan Hau-Riege of Lawrence Livermore National Laboratory and colleagues heated graphite to induce a transition from solid to liquid and to warm-dense plasma.

Ultrafast phase transitions from solid to liquid and plasma states are important in the development of new material-synthesis techniques, in ultrafast imaging, and high-energy density science.

By using different pulse lengths and calculating different spectra, the team was able to extract the time dependence of plasma parameters, such as electron and ion temperatures and ionization states.

"We found that the heating and disintegration of the ion lattice occurs much faster than anticipated," Hau-Riege said.

The research provides new insights into the behavior of matter irradiated by intense hard X-rays. Though the study ultimately serves as a breakthrough in plasma physics and ultrafast materials science, it also affects other fields such as single molecule biological imaging and X-ray optics.

For single-molecule bioimaging, the team found that in certain cases it may be substantially more difficult than anticipated because energy transfer is surprisingly fast. In X-ray optics, they found that the damage threshold is lower than anticipated.

This is the first XFEL high-energy density science experiment that used inelastic X-ray scattering as a plasma diagnostic.

The research is scheduled to appear in the May 21 edition Physical Review Letters.

Other Livermore researchers include Alexander Graf, Tilo Doppner, Rich London, Carsten Formann, Siegfried Glenzer, Matthias Frank and Joe Bradley.

In addition to SLAC National Accelerator Laboratory, participating institutions include Universitat Duisburg-Essen; Max Planck Advanced Study Group, Center for Free Electron Laser Science; Max Planck Institut fur medizinische Forschung; and Max Planck Institut fur Kernphysik, all of Germany.


Story Source:

Materials provided by DOE/Lawrence Livermore National Laboratory. Note: Content may be edited for style and length.


Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Graphite enters different states of matter in ultrafast experiment." ScienceDaily. ScienceDaily, 16 May 2012. <www.sciencedaily.com/releases/2012/05/120516140019.htm>.
DOE/Lawrence Livermore National Laboratory. (2012, May 16). Graphite enters different states of matter in ultrafast experiment. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2012/05/120516140019.htm
DOE/Lawrence Livermore National Laboratory. "Graphite enters different states of matter in ultrafast experiment." ScienceDaily. www.sciencedaily.com/releases/2012/05/120516140019.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES