New! Sign up for our free email newsletter.
Science News
from research organizations

Protein study gives fresh impetus in fight against superbugs

Date:
January 31, 2012
Source:
University of Edinburgh
Summary:
Scientists have shed new light on the way superbugs such as MRSA are able to become resistant to treatment with antibiotics.
Share:
FULL STORY

Scientists have shed light on the way superbugs such as MRSA are able to become resistant to antibiotics. Researchers have mapped the complex molecular structure of an enzyme found in many bacteria.

These molecules -- known as restriction enzymes -- control the speed at which bacteria can acquire resistance to drugs and eventually become superbugs.

Infectious bacteria

The study, carried out by an international team including scientists from the University of Edinburgh, focused on E. coli.

However, the results would apply to many other infectious bacteria.

After prolonged treatment with antibiotics, bacteria may evolve to become resistant to many drugs, as is the case with superbugs such as MRSA.

Enzyme activity

Bacteria become resistant by absorbing DNA -- usually from other bugs or viruses -- which contains genetic information enabling the bacteria to block the action of drugs.

Restriction enzymes can slow or halt this absorption process.

Enzymes that work in this way are believed to have evolved as a defense mechanism for bacteria.

DNA reaction

The researchers also studied the enzyme in action by reacting it with DNA from another organism.

They were able to model the mechanism by which the enzyme disables foreign DNA, while safeguarding the bacteria's own genetic material.

Restriction enzymes' ability to sever genetic material is widely applied by scientists to cut and paste strands of DNA in genetic engineering.

The study was carried out in collaboration with the Universities of Leeds and Portsmouth with partners in Poland and France.

It was supported by the Biotechnology and Biological Sciences Research Council and the Wellcome Trust and published in Genes and Development journal.


Story Source:

Materials provided by University of Edinburgh. Note: Content may be edited for style and length.


Journal Reference:

  1. C. K. Kennaway, J. E. Taylor, C. F. Song, W. Potrzebowski, W. Nicholson, J. H. White, A. Swiderska, A. Obarska-Kosinska, P. Callow, L. P. Cooper, G. A. Roberts, J.-B. Artero, J. M. Bujnicki, J. Trinick, G. G. Kneale, D. T. F. Dryden. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes & Development, 2012; 26 (1): 92 DOI: 10.1101/gad.179085.111

Cite This Page:

University of Edinburgh. "Protein study gives fresh impetus in fight against superbugs." ScienceDaily. ScienceDaily, 31 January 2012. <www.sciencedaily.com/releases/2012/01/120131102521.htm>.
University of Edinburgh. (2012, January 31). Protein study gives fresh impetus in fight against superbugs. ScienceDaily. Retrieved November 14, 2024 from www.sciencedaily.com/releases/2012/01/120131102521.htm
University of Edinburgh. "Protein study gives fresh impetus in fight against superbugs." ScienceDaily. www.sciencedaily.com/releases/2012/01/120131102521.htm (accessed November 14, 2024).

Explore More

from ScienceDaily

RELATED STORIES