Escaping gravity's clutches: Information could escape from black holes after all, study suggests
- Date:
- August 11, 2011
- Source:
- University of York
- Summary:
- New research gives a fresh perspective on the physics of black holes. Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but a new study suggests that information could escape from black holes after all.
- Share:
New research by scientists at the University of York gives a fresh perspective on the physics of black holes. Black holes are objects in space that are so massive and compact they were described by Einstein as "bending" space. Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but the study by Prof. Samuel Braunstein and Dr. Manas Patra suggests that information could escape from black holes after all.
The implications could be revolutionary, suggesting that gravity may not be a fundamental force of nature.
Prof. Braunstein says: "Our results didn't need the details of a black hole's curved space geometry. That lends support to recent proposals that space, time and even gravity itself may be emergent properties within a deeper theory. Our work subtly changes those proposals, by identifying quantum information theory as the likely candidate for the source of an emergent theory of gravity."
But quantum mechanics is the theory of light and atoms, and many physicists are skeptical that it could be used to explain the slow evaporation of black holes without incorporating the effects of gravity.
The research, which appears in the latest issue of Physical Review Letters, uses the basic tenets of quantum mechanics to give a new description of information leaking from a black hole.
Prof. Braunstein says: "Our results actually extend the predictions made by well-established techniques that rely on a detailed knowledge of space time and black hole geometry."
Dr. Patra adds: "We cannot claim to have proven that escape from a black hole is truly possible, but that is the most straight-forward interpretation of our results. Indeed, our results suggest that quantum information theory will play a key role in a future theory combining quantum mechanics and gravity."
Story Source:
Materials provided by University of York. Note: Content may be edited for style and length.
Journal Reference:
- Samuel Braunstein, Manas Patra. Black Hole Evaporation Rates without Spacetime. Physical Review Letters, 2011; 107 (7) DOI: 10.1103/PhysRevLett.107.071302
Cite This Page: