New! Sign up for our free email newsletter.
Science News
from research organizations

Escaping gravity's clutches: Information could escape from black holes after all, study suggests

Date:
August 11, 2011
Source:
University of York
Summary:
New research gives a fresh perspective on the physics of black holes. Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but a new study suggests that information could escape from black holes after all.
Share:
FULL STORY

New research by scientists at the University of York gives a fresh perspective on the physics of black holes. Black holes are objects in space that are so massive and compact they were described by Einstein as "bending" space. Conventional thinking asserts that black holes swallow everything that gets too close and that nothing can escape, but the study by Prof. Samuel Braunstein and Dr. Manas Patra suggests that information could escape from black holes after all.

The implications could be revolutionary, suggesting that gravity may not be a fundamental force of nature.

Prof. Braunstein says: "Our results didn't need the details of a black hole's curved space geometry. That lends support to recent proposals that space, time and even gravity itself may be emergent properties within a deeper theory. Our work subtly changes those proposals, by identifying quantum information theory as the likely candidate for the source of an emergent theory of gravity."

But quantum mechanics is the theory of light and atoms, and many physicists are skeptical that it could be used to explain the slow evaporation of black holes without incorporating the effects of gravity.

The research, which appears in the latest issue of Physical Review Letters, uses the basic tenets of quantum mechanics to give a new description of information leaking from a black hole.

Prof. Braunstein says: "Our results actually extend the predictions made by well-established techniques that rely on a detailed knowledge of space time and black hole geometry."

Dr. Patra adds: "We cannot claim to have proven that escape from a black hole is truly possible, but that is the most straight-forward interpretation of our results. Indeed, our results suggest that quantum information theory will play a key role in a future theory combining quantum mechanics and gravity."


Story Source:

Materials provided by University of York. Note: Content may be edited for style and length.


Journal Reference:

  1. Samuel Braunstein, Manas Patra. Black Hole Evaporation Rates without Spacetime. Physical Review Letters, 2011; 107 (7) DOI: 10.1103/PhysRevLett.107.071302

Cite This Page:

University of York. "Escaping gravity's clutches: Information could escape from black holes after all, study suggests." ScienceDaily. ScienceDaily, 11 August 2011. <www.sciencedaily.com/releases/2011/08/110810215342.htm>.
University of York. (2011, August 11). Escaping gravity's clutches: Information could escape from black holes after all, study suggests. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2011/08/110810215342.htm
University of York. "Escaping gravity's clutches: Information could escape from black holes after all, study suggests." ScienceDaily. www.sciencedaily.com/releases/2011/08/110810215342.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES