New! Sign up for our free email newsletter.
Science News
from research organizations

Gene 'relocation' key to most evolutionary change in bacteria

Date:
January 30, 2011
Source:
University of Maryland
Summary:
Scientists have now shown that bacteria evolve new abilities, such as antibiotic resistance, predominantly by acquiring genes from other bacteria. The researchers new insights into the evolution of bacteria partly contradict the widely accepted theory that new biological functions in bacteria and other microbes arise primarily through the process of gene duplication within the same organism.
Share:
FULL STORY

In a new study, scientists at the University of Maryland and the Institut Pasteur show that bacteria evolve new abilities, such as antibiotic resistance, predominantly by acquiring genes from other bacteria.

The researchers new insights into the evolution of bacteria partly contradict the widely accepted theory that new biological functions in bacteria and other microbes arise primarily through the process of gene duplication within the same organism. Their just released study will be published in the open-access journal PLoS Genetics on January 27.

Microbes live and thrive in incredibly diverse and harsh conditions, from boiling or freezing water to the human immune system. This remarkable adaptability results from their ability to quickly modify their repertoire of protein functions by gaining, losing and modifying their genes. Microbes were known to modify genes to expand their repertoire of protein families in two ways: via duplication processes followed by slow functional specialization, in the same way as large multicellular organisms like us, and by acquiring different genes directly from other microbes. The latter process, known as horizontal gene transfer, is notoriously conspicuous in the spread of antibiotic resistance, turning some bacteria into drug-resistant 'superbugs' such as MRSA (methicillin-resistant Staphylococcus aureus), a serious public health concern.

The researchers examined a large database of microbial genomes, including some of the most virulent human pathogens, to discover whether duplication or horizontal gene transfer was the most common expansion method. Their study shows that gene family expansion can indeed follow both routes, but unlike in large multicellular organisms, it predominantly takes place by horizontal transfer.

First author Todd Treangen, a postdoctoral researcher in the University of Maryland Center for Bioinformatics and Computational Biology and co-author Eduardo P. C. Rocha of the Institut Pasteur conclude that because microbes invented the majority of life's biochemical diversity -- from respiration to photosynthesis --, "the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families."


Story Source:

Materials provided by University of Maryland. Note: Content may be edited for style and length.


Journal Reference:

  1. Todd J. Treangen, Eduardo P. C. Rocha. Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes. PLoS Genetics, 2011; 7 (1): e1001284 DOI: 10.1371/journal.pgen.1001284

Cite This Page:

University of Maryland. "Gene 'relocation' key to most evolutionary change in bacteria." ScienceDaily. ScienceDaily, 30 January 2011. <www.sciencedaily.com/releases/2011/01/110127205845.htm>.
University of Maryland. (2011, January 30). Gene 'relocation' key to most evolutionary change in bacteria. ScienceDaily. Retrieved January 20, 2025 from www.sciencedaily.com/releases/2011/01/110127205845.htm
University of Maryland. "Gene 'relocation' key to most evolutionary change in bacteria." ScienceDaily. www.sciencedaily.com/releases/2011/01/110127205845.htm (accessed January 20, 2025).

Explore More

from ScienceDaily

RELATED STORIES