Temporary hearing deprivation can lead to 'lazy ear'
- Date:
- March 11, 2010
- Source:
- Cell Press
- Summary:
- Scientists have gained new insight into why a relatively short-term hearing deprivation during childhood may lead to persistent hearing deficits, long after hearing is restored to normal. The research reveals that, much like the visual cortex, development of the auditory cortex is quite vulnerable if it does not receive appropriate stimulation at just the right time.
- Share:
Scientists have gained new insight into why a relatively short-term hearing deprivation during childhood may lead to persistent hearing deficits, long after hearing is restored to normal. The research, published by Cell Press in the March 11 issue of the journal Neuron, reveals that, much like the visual cortex, development of the auditory cortex is quite vulnerable if it does not receive appropriate stimulation at just the right time.
It is well established that degraded sensory experience during critical periods of childhood development can have detrimental effects on the brain and behavior. In the classic example, a condition called amblyopia (also known as lazy eye) can arise when balanced visual signals are not transmitted from each eye to the brain during a critical period for visual cortex development.
"An analogous problem may exist in the realm of hearing, in that children commonly experience a buildup of viscous fluid in the middle ear cavity, called otitis media with effusion, which can degrade the quality of acoustic signals reaching the brain and has been associated with long-lasting loss of auditory perceptual acuity," explains senior study author, Dr. Daniel Polley from the Massachusetts Eye and Ear Infirmary.
Dr. Polley and his colleague Dr. Maria Popescu from Vanderbilt University implemented a method to reversibly block hearing in one ear in infant, juvenile, and adult rats then looked at how auditory brain areas were impacted by the temporary hearing loss.
They observed that the temporary hearing loss in one ear distorted auditory patterning in the brain, weakened the deprived ear's representation and strengthened the open ear's representation. The scope of reorganization was most striking in the cortex (and not "lower" parts of the auditory pathway) and was more pronounced when hearing deprivation began in infancy than in later life. Therefore, it appears that maladaptive plasticity in the developing auditory cortex might underlie "amblyaudio," in a similar fashion to the contributions of visual cortex plasticity to amblyopia.
"The good news about amblyaudio is that it is unlikely to be a permanent problem for most people," concludes Dr. Polley. "Even if the acoustic signal isn't improved within the critical period, the mature auditory cortex still expresses a remarkable degree of plasticity. We know that properly designed visual training can improve visual acuity in adult amblyopia patients. We are gearing up now to study whether auditory perceptual training may also be a promising approach to accelerate recovery in individuals with unresolved auditory processing deficits stemming from childhood hearing loss."
The researchers include Maria V. Popescu and Daniel B. Polley, Vanderbilt University School of Medicine, Nashville, TN.
Story Source:
Materials provided by Cell Press. Note: Content may be edited for style and length.
Journal Reference:
- Maria V. Popescu, Daniel B. Polley. Monaural Deprivation Disrupts Development of Binaural Selectivity in Auditory Midbrain and Cortex. Neuron, 2010; 65 (5): 718-731 DOI: 10.1016/j.neuron.2010.02.019
Cite This Page: