Unexpected Properties Of Nanostructures: When Holes Obscure The View
- Date:
- November 12, 2009
- Source:
- University of Stuttgart
- Summary:
- Metals are opaque: they reflect light almost completely. For that reason they are utilized as mirrors; as films deposited onto a glass -- you find them in any bathroom. If the metal film is very thin, the mirror is semitransparent. These half-silvered mirrors help to hide surveillance video cameras, for instance. One might think that holes in a metal film enhance the view. Exactly the opposite is true. Physicists discovered that tiny holes actually make the metal opaque.
- Share:
Metals are opaque: they reflect light almost completely. For that reason they are utilized as mirrors; as films deposited onto glass -- you find them in any bathroom. If the metal film is very thin, the mirror is semitransparent. These half-silvered mirrors help to hide surveillance video cameras, for instance.
One might think that holes in a metal film enhance the view. Exactly the opposite is true. Physicists at the University Stuttgart discovered that tiny holes actually make the metal opaque. These findings are reported in a recent issue of Physical Review Letters.
Ten years ago physicists found a related strange phenomenon: They drilled tiny holes in a thick metal layer, which is normally opaque. Since the holes were much smaller than the wavelength, classical optics tells us that the light should not be transmitted but completely reflected. Surprisingly more light passed through the holes than expected. This triggered worldwide research activities that have resulted in exciting new finding every year.
In general, materials are not optically transparent and electrically conducting at the same time. The scientists at the Physikalisches Institut of Universität Stuttgart tried to perforate a very thin metal film with tiny holes in such a way that it still conducts electricity and transmits light unimpeded. To their surprise the opposite effect was observed. Perforating a semi-transparent metal film by a periodic array of tiny holes does not lead to enhanced transmission, but significantly less light passes through the film; although almost half of the film consists of holes. As a matter of fact, the holes obscure the view.
The physicists at Stuttgart measured the optical transmission of a 20 nanometer gold film, just a few dozen atoms thick. The film was perforated by 200 nm holes arranged in a regular fashion 100 nm apart. These layers are produced by lithographic methods which are standard in semiconductor industry and can be used on a large scale. In a certain spectral range in the infrared and visible, the films exhibit strong absorption. Normally metals do not show these absorption features and they are a direct consequence of the period arrangement of the holes. It mainly depends on the periodicity (300 nm in the present case) and not on the size of the holes.
Due to this periodic structure collective excitations of the metallic charge are possible, so-called plasmons. The particular feature of the plasmons is that the excitation depends on the angle of the incident light. Turning the film slightly changes the color of the plasmons. This is exactly what was observed in the experiment.
Story Source:
Materials provided by University of Stuttgart. Note: Content may be edited for style and length.
Journal Reference:
- Braun et al. How Holes Can Obscure the View: Suppressed Transmission through an Ultrathin Metal Film by a Subwavelength Hole Array. Physical Review Letters, 2009; 103 (20): 203901 DOI: 10.1103/PhysRevLett.103.203901
Cite This Page: