New Tooth Cavity Protection: Nanoparticles Make Surface Too Slippery For Bacteria To Adhere
- Date:
- December 22, 2008
- Source:
- Clarkson University
- Summary:
- Scientists have discovered a new method of protecting teeth from cavities by ultrafine polishing with silica nanoparticles.
- Share:
Clarkson University Center for Advanced Materials Processing Professor Igor Sokolov and graduate student Ravi M. Gaikwad have discovered a new method of protecting teeth from cavities by ultrafine polishing with silica nanoparticles.
The researchers adopted polishing technology used in the semiconductor industry (chemical mechanical planarization) to polish the surface of human teeth down to nanoscale roughness. Roughness left on the tooth after the polishing is just a few nanometers, which is one-billionth of a meter or about 100,000 times smaller than a grain of sand.
Sokolov and Gaikwad showed that teeth polished in this way become too “slippery” for the "bad" bacteria that is responsible for the destruction of dental enamel. As a result the bacteria can be removed fairly easily before they cause damage to the enamel.
Although silica particles have been used before for tooth polishing, polishing with nanosized particles has not been reported. The researchers hypothesized that such polishing may protect tooth surfaces against the damage caused by cariogenic bacteria, because the bacteria can be removed easily from such polished surfaces.
The Clarkson researchers' findings were published in the October issue of the Journal of Dental Research, the dentistry journal with the top worldwide scientific impact index.
Sokolov is a professor of physics, professor of chemical and biomolecular science, and director of Clarkson's Nanoengineering and Biotechnology Laboratories Center (NABLAB). Gaikwad is a graduate student in physics.
Story Source:
Materials provided by Clarkson University. Note: Content may be edited for style and length.
Cite This Page: