New! Sign up for our free email newsletter.
Science News
from research organizations

Internal Waves Moving Across The Pacific Ocean Affect Global Climate System

Date:
January 17, 2008
Source:
American Geophysical Union
Summary:
When ocean tidal currents encounter undersea topography, waves called internal tides are generated. These waves propagate into the ocean interior and can contribute significantly to oceanic mixing when they break, influencing how nutrients are distributed and how energy is transported throughout the ocean. Understanding where this breaking occurs in the ocean is thus central to understanding the global climate system.
Share:
FULL STORY

When ocean tidal currents encounter undersea topography, waves called internal tides are generated.

These waves propagate into the ocean interior and can contribute significantly to oceanic mixing when they break, influencing how nutrients are distributed and how energy is transported throughout the ocean.

Understanding where this breaking occurs in the ocean is thus central to understanding the global climate system.

Prior models showed that a particular breaking mechanism known as "parametric subharmonic instability" (PSI) could in principle remove a large amount of energy from the internal tides at a "critical latitude" of 28.8 degrees North.

To test this notion, Alford et al. heavily instrumented a 1400-km (870-mile)-long line beginning at French Frigate Shoals, a major generation site at the Hawaiian Ridge, with the intention of tracking the internal tide's northward progress past the critical latitude.

They found strong evidence that PSI does occur, leading to intense alternating bands of clockwise-rotating velocity, but that the process appears not to substantially attenuate the internal tide (whose fate remains uncertain). However, PSI does appear to strongly affect the latitudinal distribution of internal wave energy.

Title: Internal waves across the Pacific

Authors: M. H. Alford: Applied Physics Laboratory, University of Washington, Seattle, Washington, U.S.A.; also at School of Oceanography, University of Washington, Seattle, Washington, U.S.A.; J. A. MacKinnon and Rob Pinkel: Scripps Institution of Oceanography, La Jolla, California, U.S.A.; Zhongxiang Zhao: Applied Physics Laboratory, University of Washington, Seattle, Washington, U.S.A.; Jody Klymak: School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada; Thomas Peacock: Mechanical Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts, U.S.A.

Source: Geophysical Research Letters (GRL) paper 10.1029/2007GL031566, 2007; http://dx.doi.org/10.1029/2007GL031566


Story Source:

Materials provided by American Geophysical Union. Note: Content may be edited for style and length.


Cite This Page:

American Geophysical Union. "Internal Waves Moving Across The Pacific Ocean Affect Global Climate System." ScienceDaily. ScienceDaily, 17 January 2008. <www.sciencedaily.com/releases/2008/01/080114162504.htm>.
American Geophysical Union. (2008, January 17). Internal Waves Moving Across The Pacific Ocean Affect Global Climate System. ScienceDaily. Retrieved January 22, 2025 from www.sciencedaily.com/releases/2008/01/080114162504.htm
American Geophysical Union. "Internal Waves Moving Across The Pacific Ocean Affect Global Climate System." ScienceDaily. www.sciencedaily.com/releases/2008/01/080114162504.htm (accessed January 22, 2025).

Explore More

from ScienceDaily

RELATED STORIES