New! Sign up for our free email newsletter.
Science News
from research organizations

Revolutionary New Theory For Origins Of Life On Earth

Date:
December 4, 2002
Source:
Royal Society
Summary:
A totally new and highly controversial theory on the origin of life on earth, is set to cause a storm in the science world and has implications for the existence of life on other planets. Research by Professor William Martin of the University of Dusseldorf and Dr Michael Russell of the Scottish Environmental Research Centre in Glasgow, claims that living systems originated from inorganic incubators - small compartments in iron sulphide rocks.
Share:
FULL STORY

A totally new and highly controversial theory on the origin of life on earth, is set to cause a storm in the science world and has implications for the existence of life on other planets. Research* by Professor William Martin of the University of Dusseldorf and Dr Michael Russell of the Scottish Environmental Research Centre in Glasgow, claims that living systems originated from inorganic incubators - small compartments in iron sulphide rocks. The new theory radically departs from existing perceptions of how life developed and it will be published in Philosophical Transactions B, a learned journal produced by the Royal Society.

Since the 1930s the accepted theories for the origins of cells and therefore the origin of life, claim that chemical reactions in the earth's most ancient atmosphere produced the building blocks of life - in essence - life first, cells second and the atmosphere playing a role.

Professor Martin and Dr Russell have long had problems with the existing hypotheses of cell evolution and their theory turns traditional views upside down. They claim that cells came first. The first cells were not living cells but inorganic ones made of iron sulphide and were formed not at the earth's surface but in total darkness at the bottom of the oceans. Life, they say, is a chemical consequence of convection currents through the earth's crust and in principle, this could happen on any wet, rocky planet.

Dr Russell says: "As hydrothermal fluid - rich in compounds such as hydrogen, cyanide, sulphides and carbon monoxide - emerged from the earth's crust at the ocean floor, it reacted inside the tiny metal sulphide cavities. They provided the right microenvironment for chemical reactions to take place. That kept the building blocks of life concentrated at the site where they were formed rather than diffusing away into the ocean. The iron sulphide cells, we argue, is where life began."

One of the implications of Martin and Russell's theory is that life on our planet, even on other planets or some large moons in our own solar system, might be much more likely than previously assumed.

The research by Professor Martin and Dr Russell is backed up by another paper The redox protein construction kit: pre-last universal common+ ancestor evolution of energy-conserving enzymes by F. Baymann, E. Lebrun, M. Brugna, B. Schoepp-Cothenet, M.-T. Giudici-Orticoni & W. Nitschke which will be published in the same edition.

###

*On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells by Professor William Martin, Institut fuer Botanik III, University of Dusseldorf and Dr Michael Russell, Scottish Environmental Research Centre, Glasgow.


Story Source:

Materials provided by Royal Society. Note: Content may be edited for style and length.


Cite This Page:

Royal Society. "Revolutionary New Theory For Origins Of Life On Earth." ScienceDaily. ScienceDaily, 4 December 2002. <www.sciencedaily.com/releases/2002/12/021204080856.htm>.
Royal Society. (2002, December 4). Revolutionary New Theory For Origins Of Life On Earth. ScienceDaily. Retrieved January 21, 2025 from www.sciencedaily.com/releases/2002/12/021204080856.htm
Royal Society. "Revolutionary New Theory For Origins Of Life On Earth." ScienceDaily. www.sciencedaily.com/releases/2002/12/021204080856.htm (accessed January 21, 2025).

Explore More

from ScienceDaily

RELATED STORIES