Cheaper solar cells with 20.2 percent efficiency
- Date:
- January 18, 2016
- Source:
- Ecole Polytechnique Fédérale de Lausanne
- Summary:
- A solar-panel material that can cut down on photovoltaic costs while achieving competitive power-conversion efficiency of 20.2 percent has been created by researchers.
- Share:
EPFL scientists have developed a solar-panel material that can cut down on photovoltaic costs while achieving competitive power-conversion efficiency of 20.2%.
Some of the most promising solar cells today use light-harvesting films made from perovskites -- a group of materials that share a characteristic molecular structure. However, perovskite-based solar cells use expensive "hole-transporting" materials, whose function is to move the positive charges that are generated when light hits the perovskite film. Publishing in Nature Energy, EPFL scientists have now engineered a considerably cheaper hole-transporting material that costs only a fifth of existing ones while keeping the efficiency of the solar cell above 20%.
As the quality of perovskite films increases, researchers are seeking other ways of improving the overall performance of solar cells. Inadvertently, this search targets the other key element of a solar panel, the hole-transporting layer, and specifically, the materials that make them up. There are currently only two hole-transporting materials available for perovskite-based solar cells. Both types are quite costly to synthesize, adding to the overall expense of the solar cell.
To address this problem, a team of researchers led by Mohammad Nazeeruddin at EPFL developed a molecularly engineered hole-transporting material, called FDT, that can bring costs down while keeping efficiency up to competitive levels. Tests showed that the efficiency of FDT rose to 20.2% -- higher than the other two, more expensive alternatives. And because FDT can be easily modified, it acts as a blueprint for an entire generation of new low-cost hole-transporting materials.
"The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify, and are prohibitively expensive, costing over €300 per gram preventing market penetration," says Nazeeruddin. "By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials -- while matching, and even surpassing their performance."
Story Source:
Materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Content may be edited for style and length.
Journal Reference:
- Michael Saliba, Simonetta Orlandi, Taisuke Matsui, Sadig Aghazada, Marco Cavazzini, Juan-Pablo Correa-Baena, Peng Gao, Rosario Scopelliti, Edoardo Mosconi, Klaus-Hermann Dahmen, Filippo De Angelis, Antonio Abate, Anders Hagfeldt, Gianluca Pozzi, Michael Graetzel, Mohammad Khaja Nazeeruddin. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy, 2016; 15017 DOI: 10.1038/NENERGY.2015.17
Cite This Page: