New! Sign up for our free email newsletter.
Science News
from research organizations

Organic electronics with an edge

Two-dimensional organic lattices are easier and safer to work with than inorganic materials for spintronic and quantum computing applications

Date:
October 1, 2015
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Using sophisticated theoretical tools, researchers in Singapore have identified a way to construct topological insulators -- a new class of spin-active materials -- out of planar organic-based complexes rather than toxic inorganic crystals.
Share:
FULL STORY

Using sophisticated theoretical tools, Agency for Science, Technology and Research (A*STAR) researchers, in Singapore, have identified a way to construct topological insulators -- a new class of spin-active materials -- out of planar organic-based complexes rather than toxic inorganic crystals.

The unique crystal structure of topological insulators makes them insulating everywhere, except around their edges. Because the conductivity of these materials is localized into quantized surface states, the current passing through topological insulators acquires special characteristics. For example, it can polarize electron spins into a single orientation -- a phenomenon that researchers are exploiting to produce 'spin-orbit couplings' that generate magnetic fields for spintronics without the need for external magnets.

Many topological insulators are made by repeatedly exfoliating inorganic minerals, such as bismuth tellurides or bismuth selenides, with sticky tape until flat, two-dimensional (2D) sheets appear. "This gives superior properties compared to bulk crystals, but mechanical exfoliation has poor reproducibility," explains Shuo-Wang Yang from the A*STAR Institute of High Performance Computing. "We proposed to investigate topological insulators based on organic coordination complexes, because these structures are more suitable for traditional wet chemical synthesis than inorganic materials."

Coordination complexes are compounds in which organic molecules known as ligands bind symmetrically around a central metal atom. Yang and his team identified novel 'shape-persistent' organic ligand complexes as good candidates for their method. These compounds feature ligands made from small, rigid aromatic rings. By using transition metals to link these organic building blocks into larger rings known as 'macrocycles', researchers can construct extended 2D lattices that feature high charge carrier mobility.

Pinpointing 2D organic lattices with desirable topological insulator properties is difficult when relying only on experiments. To refine this search, Yang and colleagues used a combination of quantum calculations and band structure simulations to screen the electronic activity of various shape-persistent organic complexes. The team looked for two key factors in their simulations: ligands that can delocalize electrons in a 2D plane similar to graphene and strong spin-orbit coupling between central transition metal nodes and ligands.

The researchers' new family of potential organic topological insulators has a 2D honeycomb macrocycles containing tri-phenyl rings, palladium or platinum metals, and amino linking groups. With promising quantum features and high theoretical stability, these complexes may serve as topological insulators in real world applications.

"These materials are easy to fabricate, and cheaper than their inorganic counterparts," says Yang. "They are also suitable for assembling directly onto semiconductor surfaces, which makes nanoelectronic applications more feasible."

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Institute of Materials Research and Engineering.


Story Source:

Materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Content may be edited for style and length.


Journal Reference:

  1. Qionghua Zhou, Jinlan Wang, Tsz Sian Chwee, Gang Wu, Xiaobai Wang, Qun Ye, Jianwei Xu, Shuo-Wang Yang. Topological insulators based on 2D shape-persistent organic ligand complexes. Nanoscale, 2015; 7 (2): 727 DOI: 10.1039/C4NR05247A

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Organic electronics with an edge." ScienceDaily. ScienceDaily, 1 October 2015. <www.sciencedaily.com/releases/2015/10/151001151051.htm>.
The Agency for Science, Technology and Research (A*STAR). (2015, October 1). Organic electronics with an edge. ScienceDaily. Retrieved December 21, 2024 from www.sciencedaily.com/releases/2015/10/151001151051.htm
The Agency for Science, Technology and Research (A*STAR). "Organic electronics with an edge." ScienceDaily. www.sciencedaily.com/releases/2015/10/151001151051.htm (accessed December 21, 2024).

Explore More

from ScienceDaily

RELATED STORIES