New! Sign up for our free email newsletter.
Science News
from research organizations

Antarctica's ice losses on the rise

Date:
May 19, 2014
Source:
University of Leeds
Summary:
Three years of observations show that the Antarctic ice sheet is now losing 159 billion tons of ice each year -- twice as much as when it was last surveyed. Scientists have now produced the first complete assessment of Antarctic ice sheet elevation change.
Share:
FULL STORY

Three years of observations show that the Antarctic ice sheet is now losing 159 billion tonnes of ice each year -- twice as much as when it was last surveyed.

A team of scientists from the UK Centre for Polar Observation and Modelling, led by researchers at the University of Leeds, have produced the first complete assessment of Antarctic ice sheet elevation change.

They used measurements collected by the European Space Agency's CryoSat-2 satellite mission, which carries an altimeter specially designed for this task.

In sharp contrast to past altimeter missions, CryoSat-2 surveys virtually all the Antarctic continent, reaching to within 215 kilometres of the South Pole and leading to a fivefold increase in the sampling of coastal regions where today's ice losses are concentrated.

Overall, the pattern of imbalance continues to be dominated by glaciers thinning in the Amundsen Sea sector of West Antarctica. However, thanks to the improved capabilities of CryoSat-2, problem areas such as the rugged terrain of the Antarctic Peninsula can now also be surveyed.

On average West Antarctica lost 134 gigatonnes of ice, East Antarctica three gigatonnes, and the Antarctic Peninsula 23 gigatonnes in each year between 2010 and 2013 -- a total loss of 159 gigatonnes each year.

The polar ice sheets are a major contributor to global sea level rise and, when combined, the Antarctic losses detected by CryoSat-2 are enough to raise global sea levels by 0.45 millimetres each year alone.

In West Antarctica, ice thinning has been detected in areas that were poorly surveyed by past satellite altimeter missions.

These newly-mapped areas contribute additional losses that bring altimeter observations closer to estimates based on other approaches.

But the average rate of ice thinning in West Antarctica has also increased, and this sector is now losing almost one third (31%) as much ice each year than it did during the five year period (2005-2010) prior to CryoSat-2's launch.

Lead author Dr Malcolm McMillan from the University of Leeds said: "We find that ice losses continue to be most pronounced along the fast-flowing ice streams of the Amundsen Sea sector, with thinning rates of between 4 and 8 metres per year near to the grounding lines of the Pine Island, Thwaites and Smith Glaciers."

This sector of Antarctica has long been identified as the most vulnerable to changes in climate and, according to recent assessments, its glaciers may have passed a point of irreversible retreat.

Launched in 2010, CryoSat carries a radar altimeter that can 'see' through clouds and in the dark, providing continuous measurements over areas like Antarctica that are prone to bad weather and long periods of darkness. The radar can measure the surface height variation of ice in fine detail, allowing scientists to record changes in its volume with unprecedented accuracy.

Professor Andrew Shepherd, also of the University of Leeds, who led the study, said: "Thanks to its novel instrument design and to its near-polar orbit, CryoSat allows us to survey coastal and high-latitude regions of Antarctica that were beyond the capability of past altimeter missions, and it seems that these regions are crucial for determining the overall imbalance."

"Although we are fortunate to now have, in CryoSat-2, a routine capability to monitor the polar ice sheets, the increased thinning we have detected in West Antarctica is a worrying development. It adds concrete evidence that dramatic changes are underway in this part of our planet, which has enough ice to raise global sea levels by more than a metre. The challenge is to use this evidence to test and improve the predictive skill of climate models."

Professor David Vaughan of the British Antarctic Survey said: "The increasing contribution of Antarctica to sea-level rise is a global issue, and we need to use every technique available to understand where and how much ice is being lost. Through some very clever technical improvements, McMillan and his colleagues have produced the best maps of Antarctic ice-loss we have ever had. Prediction of the rate of future global sea-level rise must be begin with a thorough understanding of current changes in the ice sheets -- this study puts us exactly where we need to be."

Dr Ian Joughin at the University of Washington, author of a recent study simulating future Antarctic ice sheet losses added: "This study does a nice job of revealing the strong thinning along the Amundsen Coast, which is consistent with theory and models indicating this region is in the early stages of collapse."

The findings from a team of UK researchers at the NERC Centre for Polar Observation and Modelling, are published in the journal Geophysical Research Letters. Professor Vaughan and Dr Joughin were not involved in the study.


Story Source:

Materials provided by University of Leeds. Note: Content may be edited for style and length.


Journal Reference:

  1. Malcolm McMillan, Andrew Shepherd, Aud Sundal, Kate Briggs, Alan Muir, Andrew Ridout, Anna Hogg, Duncan Wingham. Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters, 2014; DOI: 10.1002/2014GL060111

Cite This Page:

University of Leeds. "Antarctica's ice losses on the rise." ScienceDaily. ScienceDaily, 19 May 2014. <www.sciencedaily.com/releases/2014/05/140519110200.htm>.
University of Leeds. (2014, May 19). Antarctica's ice losses on the rise. ScienceDaily. Retrieved November 20, 2024 from www.sciencedaily.com/releases/2014/05/140519110200.htm
University of Leeds. "Antarctica's ice losses on the rise." ScienceDaily. www.sciencedaily.com/releases/2014/05/140519110200.htm (accessed November 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES