New! Sign up for our free email newsletter.
Science News
from research organizations

Improving 'crop per drop' could boost global food security and water sustainability

Date:
May 29, 2013
Source:
University of Minnesota
Summary:
Improvements in crop water productivity -- the amount of food produced per unit of water consumed -- have the potential to improve both food security and water sustainability in many parts of the world, according to a new study.
Share:
FULL STORY

Improvements in crop water productivity -- the amount of food produced per unit of water consumed -- have the potential to improve both food security and water sustainability in many parts of the world, according to a study published online in Environmental Research Letters May 29 by scientists with the University of Minnesota's Institute on the Environment (IonE) and the Institute of Crop Science and Resource Conservation (INRES) at the University of Bonn, Germany.

Led by IonE postdoctoral research scholar Kate A. Brauman, the research team analyzed crop production, water use and crop water productivity by climatic zone for 16 staple food crops: wheat, maize, rice, barley, rye, millet, sorghum, soybean, sunflower, potato, cassava, sugarcane, sugar beet, oil palm, rapeseed (canola) and groundnut (peanut). Together these crops constitute 56 percent of global crop production by tonnage, 65 percent of crop water consumption, and 68 percent of all cropland by area. The study is the first of its kind to look at water productivity for this many crops at a global scale.

The wide range of variation in crop water productivity in places that have similar climates means that there are lots of opportunities for improving the trade-off between food and water. And the implications of doing so are substantial: The researchers calculated that in drier regions, bringing up the very lowest performers to just the 20th percentile could increase annual production on rain-fed cropland enough to provide food for an estimated 110 million people without increasing water use or using additional cropland. On irrigated cropland, water consumption could be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people while maintaining current production.

"Since crop production consumes more freshwater than any other human activity on the planet, the study has significant implications for addressing the twin challenges of water stress and food insecurity," says Brauman.

For example, if low crop water productivity in precipitation-limited regions were raised to the 20th percentile of water productivity, specific to particular crops and climates, total rain-fed food production in Africa could be increased by more than 10 percent without exploiting additional cropland. Similar improvements in crop water productivity on irrigated cropland could reduce total water consumption some 8-15 percent in precipitation-limited regions of Africa, Asia, Europe and South America.

Because the study is global in scope, it is able to identify potential locations for interventions, crops to pay attention to, and opportunities for the biggest improvements in crop water management. Specific solutions for improving crop per drop will vary by location and climatic zone over time, however.


Story Source:

Materials provided by University of Minnesota. Note: Content may be edited for style and length.


Journal Reference:

  1. Kate A Brauman, Stefan Siebert, Jonathan A Foley. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environmental Research Letters, 2013; 8 (2): 024030 DOI: 10.1088/1748-9326/8/2/024030

Cite This Page:

University of Minnesota. "Improving 'crop per drop' could boost global food security and water sustainability." ScienceDaily. ScienceDaily, 29 May 2013. <www.sciencedaily.com/releases/2013/05/130529144325.htm>.
University of Minnesota. (2013, May 29). Improving 'crop per drop' could boost global food security and water sustainability. ScienceDaily. Retrieved November 13, 2024 from www.sciencedaily.com/releases/2013/05/130529144325.htm
University of Minnesota. "Improving 'crop per drop' could boost global food security and water sustainability." ScienceDaily. www.sciencedaily.com/releases/2013/05/130529144325.htm (accessed November 13, 2024).

Explore More

from ScienceDaily

RELATED STORIES